Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
TOPICAL REVIEW—Phononics and phonon engineering |
Prev
Next
|
|
|
Anti-parity-time symmetric phase transition in diffusive systems |
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰)† |
1 School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Parity-time (PT) symmetry/anti-parity-time (APT) symmetry in non-Hermitian systems reveal profound physics and spawn intriguing effects. Recently, it has been introduced into diffusive systems together with the concept of exceptional points (EPs) from quantum mechanics and the wave systems. With the aid of convection, we can generate complex thermal conductivity and imitate various wavelike dynamics in heat transfer, where heat flow can be "stopped" or moving against the background motion. Non-Hermitian diffusive systems offer us a new platform to investigate the heat wave manipulation. In this review, we first introduce the construction of APT symmetry in a simple double-channel toy model. Then we show the phase transition around the EP. Finally, we extend the double-channel model to the four-channel one for showing the high-order EP and the associated phase transition. In a general conclusion, the phase difference of adjacent channels is always static in the APT symmetric phase, while it dynamically evolves or oscillates when the APT symmetry is broken.
|
Received: 27 September 2020
Revised: 02 December 2020
Accepted manuscript online: 24 December 2020
|
PACS:
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
44.10.+i
|
(Heat conduction)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674119 and 11690032) and the Fundamental Research Funds for the Central Universities, China (HUST: 2019JYCXJJ038). X. F. Z. and P. C. C. acknowledge the financial support from the Bird Nest Plan of HUST. |
Corresponding Authors:
†Corresponding author. E-mail: xfzhu@hust.edu.cn
|
Cite this article:
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰) Anti-parity-time symmetric phase transition in diffusive systems 2021 Chin. Phys. B 30 030505
|
1 Kato T 1966 Perturbation Theory of Linear Operators(Berlin: Springer) 2 Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 3 L\'evai G and Znojil M 2000 J. Phys. Math. Gen. 33 7165 4 Ahmed Z 2011 Phys. Lett. A 282 343 5 El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632 6 Lin Z, Ramezani H, Eichelkraut T, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.106.213901 2011 Phys. Rev. Lett. 106 213901 7 Zhu X, Ramezani H, Shi C, Zhu J and Zhang X 2014 Phys. Rev. X 4 031042 8 Zhu X, Feng L, Zhang P, Yin X and Zhang X 2013 Opt. Lett. 38 002821 9 Feng L, Xu Y Long, Fegadolli W, et al. \hrefhttp://doi.org/10.1038/nmat3495 2013 Nat. Mater 12 108 10 Cao P, Yang X, Wang S, et al. \hrefhttp://doi.org/10.1109/JPHOT.2017.2653621 2017 IEEE Photonics Journal 9 2200209 11 Wong Z J, Xu Y L, Kim J, et al. \hrefhttp://doi.org/10.1038/nphoton.2016.216 2016 Nat. Photonics 10 796 12 Peng B, \"Ozdemir\cS K, Rotter S, et al. \hrefhttp://doi.org/10.1126/science.1258004 2014 Science 346 328 13 Chong Y D, Li G and Stone A D 2011 Phys. Rev. Lett. 106 093902 14 Chen W, \"Ozdemir\cS K, Zhao G, et al. \hrefhttp://doi.org/10.1038/nature23281 2017 Nature 548 192 15 Wiersig J 2014 Phys. Rev. Lett. 112 203901 16 Fang Y, Li X, Xia J and Xu Z 2019 IEEE Sensors Journal 19 2533 17 Doppler J, Mailybaev A A, B\"ohm J, et al. \hrefhttp://doi.org/10.1038/nature18605 2016 Nature 537 76 18 Liu Q, Li S, Wang B, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.124.153903 2020 Phys. Rev. Lett. 124 153903 19 Ke S, Zhao D, Fu J, et al. \hrefhttp://doi.org/10.1109/JSTQE.2020.3010586 2020 IEEE J. Sel. Top Quant. 26 4401008 20 Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802 21 Gong Z, Ashida Y, Kawabata K, et al. \hrefhttp://doi.org/10.1103/PhysRevX.8.031079 2018 Phys. Rev. X 8 031079 22 Li G and Tureci H E 2013 Phys. Rev. A 88 053810 23 Wu J, Artoni M and Rocca G 2014 Phys. Rev. Lett. 113 123004 24 Peng P, Cao W, Shen C, et al. \hrefhttp://doi.org/10.1038/nphys3842 2016 Nature Phys 12 1139 25 Antonosyan D A, Solntsev A S and Sukhorukov A A 2015 Opt. Lett. 40 4575 26 Yang F, Liu Y C and You L 2017 Phys. Rev. A 96 053845 27 Choi Y, Hahn C, Yoon J W and Song S H 2018 Nat. Commun. 9 2182 28 Zhang X L, Jiang T S and Chan C T 2019 Light: Sci. & Appl. 8 88 29 Li Y, Peng Y, Han L, et al. \hrefhttp://doi.org/10.1126/science.aaw6259 2019 Science 364 170 30 Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907 31 Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303 32 Han T, Bai X, Gao D, Thong J, Li B and Qiu C W 2014 Phys. Rev. Lett. 112 054302 33 Li J, Li Y, Cao P, et al. \hrefhttp://doi.org/10.1002/adma.202003823 2020 Adv. Mater. 32 2003823 34 Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901 35 Peng Y G, Li Y, Cao P C, et al. \hrefhttp://doi.org/10.1002/adfm.202002061 2020 Adv. Funct. Mater. 30 2002061 36 Peng Y, et al. \hrefhttp://doi.org/10.1002/adfm.v30.28 37 Hu R, Zhou S, Li Y, et al. \hrefhttp://doi.org/10.1002/adma.201707237 2018 Adv. Mater. 3 1707237 38 Li Y, Zhu K J, Peng Y G, et al. \hrefhttp://doi.org/10.1038/s41563-018-0239-6 2019 Nat. Mater. 18 48 39 Moccia M, Castaldi G, S Savo, Sato Y and Galdi V 2014 Phys. Rev. X 4 021025 40 Cao P, Li Y, Peng Y, et al. \hrefhttp://doi.org/10.30919/esee8c3652020 ES Energy & Environment 7 48 41 K\"Ozdemir S, Rotter S, Nori F, et al. \hrefhttp://doi.org/10.1038/s41563-019-0304-9 2019 Nat. Mater. 18 783 42 Miri M A and Al\`u A 2019 Science 363 eaar7709 43 Bejan A 2013 Convection Heat Transfer, 4th edn. (New York: Wiley) 44 Xu L and Huang J 2020 Chin. Phys. Lett. 37 080502 45 Xu L and Huang J 2020 Int J Heat Mass Tran 159 120133 46 Yoshida T and Hatsugai Y arXiv: 2007.08730 47 Liu J, Han Y and Liu C 2020 Chin. Phys. B 29 010302 48 Liu J, Han Y and Liu C 2019 Chin. Phys. B 28 100304 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|