Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030505    DOI: 10.1088/1674-1056/abd694
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
TOPICAL REVIEW—Phononics and phonon engineering Prev   Next  

Anti-parity-time symmetric phase transition in diffusive systems

Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰)†
1 School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Parity-time (PT) symmetry/anti-parity-time (APT) symmetry in non-Hermitian systems reveal profound physics and spawn intriguing effects. Recently, it has been introduced into diffusive systems together with the concept of exceptional points (EPs) from quantum mechanics and the wave systems. With the aid of convection, we can generate complex thermal conductivity and imitate various wavelike dynamics in heat transfer, where heat flow can be "stopped" or moving against the background motion. Non-Hermitian diffusive systems offer us a new platform to investigate the heat wave manipulation. In this review, we first introduce the construction of APT symmetry in a simple double-channel toy model. Then we show the phase transition around the EP. Finally, we extend the double-channel model to the four-channel one for showing the high-order EP and the associated phase transition. In a general conclusion, the phase difference of adjacent channels is always static in the APT symmetric phase, while it dynamically evolves or oscillates when the APT symmetry is broken.
Keywords:  anti-parity-time symmetry      phase transition      exceptional point      heat transfer  
Received:  27 September 2020      Revised:  02 December 2020      Accepted manuscript online:  24 December 2020
PACS:  05.70.Fh (Phase transitions: general studies)  
  44.10.+i (Heat conduction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674119 and 11690032) and the Fundamental Research Funds for the Central Universities, China (HUST: 2019JYCXJJ038). X. F. Z. and P. C. C. acknowledge the financial support from the Bird Nest Plan of HUST.
Corresponding Authors:  Corresponding author. E-mail: xfzhu@hust.edu.cn   

Cite this article: 

Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰) Anti-parity-time symmetric phase transition in diffusive systems 2021 Chin. Phys. B 30 030505

1 Kato T 1966 Perturbation Theory of Linear Operators(Berlin: Springer)
2 Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
3 L\'evai G and Znojil M 2000 J. Phys. Math. Gen. 33 7165
4 Ahmed Z 2011 Phys. Lett. A 282 343
5 El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
6 Lin Z, Ramezani H, Eichelkraut T, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.106.213901 2011 Phys. Rev. Lett. 106 213901
7 Zhu X, Ramezani H, Shi C, Zhu J and Zhang X 2014 Phys. Rev. X 4 031042
8 Zhu X, Feng L, Zhang P, Yin X and Zhang X 2013 Opt. Lett. 38 002821
9 Feng L, Xu Y Long, Fegadolli W, et al. \hrefhttp://doi.org/10.1038/nmat3495 2013 Nat. Mater 12 108
10 Cao P, Yang X, Wang S, et al. \hrefhttp://doi.org/10.1109/JPHOT.2017.2653621 2017 IEEE Photonics Journal 9 2200209
11 Wong Z J, Xu Y L, Kim J, et al. \hrefhttp://doi.org/10.1038/nphoton.2016.216 2016 Nat. Photonics 10 796
12 Peng B, \"Ozdemir\cS K, Rotter S, et al. \hrefhttp://doi.org/10.1126/science.1258004 2014 Science 346 328
13 Chong Y D, Li G and Stone A D 2011 Phys. Rev. Lett. 106 093902
14 Chen W, \"Ozdemir\cS K, Zhao G, et al. \hrefhttp://doi.org/10.1038/nature23281 2017 Nature 548 192
15 Wiersig J 2014 Phys. Rev. Lett. 112 203901
16 Fang Y, Li X, Xia J and Xu Z 2019 IEEE Sensors Journal 19 2533
17 Doppler J, Mailybaev A A, B\"ohm J, et al. \hrefhttp://doi.org/10.1038/nature18605 2016 Nature 537 76
18 Liu Q, Li S, Wang B, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.124.153903 2020 Phys. Rev. Lett. 124 153903
19 Ke S, Zhao D, Fu J, et al. \hrefhttp://doi.org/10.1109/JSTQE.2020.3010586 2020 IEEE J. Sel. Top Quant. 26 4401008
20 Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802
21 Gong Z, Ashida Y, Kawabata K, et al. \hrefhttp://doi.org/10.1103/PhysRevX.8.031079 2018 Phys. Rev. X 8 031079
22 Li G and Tureci H E 2013 Phys. Rev. A 88 053810
23 Wu J, Artoni M and Rocca G 2014 Phys. Rev. Lett. 113 123004
24 Peng P, Cao W, Shen C, et al. \hrefhttp://doi.org/10.1038/nphys3842 2016 Nature Phys 12 1139
25 Antonosyan D A, Solntsev A S and Sukhorukov A A 2015 Opt. Lett. 40 4575
26 Yang F, Liu Y C and You L 2017 Phys. Rev. A 96 053845
27 Choi Y, Hahn C, Yoon J W and Song S H 2018 Nat. Commun. 9 2182
28 Zhang X L, Jiang T S and Chan C T 2019 Light: Sci. & Appl. 8 88
29 Li Y, Peng Y, Han L, et al. \hrefhttp://doi.org/10.1126/science.aaw6259 2019 Science 364 170
30 Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
31 Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
32 Han T, Bai X, Gao D, Thong J, Li B and Qiu C W 2014 Phys. Rev. Lett. 112 054302
33 Li J, Li Y, Cao P, et al. \hrefhttp://doi.org/10.1002/adma.202003823 2020 Adv. Mater. 32 2003823
34 Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
35 Peng Y G, Li Y, Cao P C, et al. \hrefhttp://doi.org/10.1002/adfm.202002061 2020 Adv. Funct. Mater. 30 2002061
36 Peng Y, et al. \hrefhttp://doi.org/10.1002/adfm.v30.28
37 Hu R, Zhou S, Li Y, et al. \hrefhttp://doi.org/10.1002/adma.201707237 2018 Adv. Mater. 3 1707237
38 Li Y, Zhu K J, Peng Y G, et al. \hrefhttp://doi.org/10.1038/s41563-018-0239-6 2019 Nat. Mater. 18 48
39 Moccia M, Castaldi G, S Savo, Sato Y and Galdi V 2014 Phys. Rev. X 4 021025
40 Cao P, Li Y, Peng Y, et al. \hrefhttp://doi.org/10.30919/esee8c3652020 ES Energy & Environment 7 48
41 K\"Ozdemir S, Rotter S, Nori F, et al. \hrefhttp://doi.org/10.1038/s41563-019-0304-9 2019 Nat. Mater. 18 783
42 Miri M A and Al\`u A 2019 Science 363 eaar7709
43 Bejan A 2013 Convection Heat Transfer, 4th edn. (New York: Wiley)
44 Xu L and Huang J 2020 Chin. Phys. Lett. 37 080502
45 Xu L and Huang J 2020 Int J Heat Mass Tran 159 120133
46 Yoshida T and Hatsugai Y arXiv: 2007.08730
47 Liu J, Han Y and Liu C 2020 Chin. Phys. B 29 010302
48 Liu J, Han Y and Liu C 2019 Chin. Phys. B 28 100304
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[12] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
No Suggested Reading articles found!