Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030506    DOI: 10.1088/1674-1056/abcfa8
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system

Chen Wang(王晨)1,†, Lu-Qin Wang(王鲁钦)2, and Jie Ren(任捷)2,
1 Department of Physics, Zhejiang Normal University, Jinhua 321004, China; 2 Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  Counter-rotating-wave terms (CRWTs) are traditionally viewed to be crucial in open small quantum systems with strong system-bath dissipation. Here by exemplifying in a nonequilibrium qubit-phonon hybrid model, we show that CRWTs can play the significant role in quantum heat transfer even with weak system-bath dissipation. By using extended coherent phonon states, we obtain the quantum master equation with heat exchange rates contributed by rotating-wave-terms (RWTs) and CRWTs, respectively. We find that including only RWTs, the steady state heat current and current fluctuations will be significantly suppressed at large temperature bias, whereas they are strongly enhanced by considering CRWTs in addition. Furthermore, for the phonon statistics, the average phonon number and two-phonon correlation are nearly insensitive to strong qubit-phonon hybridization with only RWTs, whereas they will be dramatically cooled down via the cooperative transitions based on CRWTs in addition. Therefore, CRWTs in quantum heat transfer system should be treated carefully.
Keywords:  quantum transport      open systems      nonequilibrium and irreversible thermodynamics      phonons or vibrational states in low-dimensional structures and nanoscale materials  
Received:  30 September 2020      Revised:  25 November 2020      Accepted manuscript online:  02 December 2020
PACS:  05.60.Gg (Quantum transport)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704093, 11775159, and 11935010), the Natural Science Foundation of Shanghai, China (Grant Nos. 18ZR1442800 and 18JC1410900), and the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
Corresponding Authors:  Corresponding author. E-mail: wangchenyifang@gmail.com Corresponding author. E-mail: Xonics@tongji.edu.cn   

Cite this article: 

Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷) Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system 2021 Chin. Phys. B 30 030506

1 Chen G2005 Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press).
2 Dubi Y and Ventra M D 2011 Rev. Mod. Phys. 83 131
3 Li N B, Ren J, Wang L, Zhang G, H\"anggi P and Li B W 2012 Rev. Mod. Phys. 84 1045
4 Breuer H P and Petruccione F2007 The theory of open quantum systems (London: Oxford University Press)
5 Weiss U2008 Quantum dissipative systems (Singapore: World Scientific)
6 Lles-Smith J, Dijkstra A G, Lambert N and Nazir A 2016 J. Chem. Phys. 144 044110
7 Carrega M, Solinas P, Sassetti M and Weiss U 2016 Phys. Rev. Lett. 116 240403
8 Kato A and Tanimura Y 2016 J. Chem. Phys. 145 224105
9 Cerrillo J, Buser M and Brandes T 2016 Phys. Rev. B 94 214308
10 Maguire H, Lles-Smith J and Nazir A 2019 Phys. Rev. Lett. 123 093601
11 Dou W J, B\"atge J, Levy M and Thoss M 2020 Phys. Rev. B 101 184304
12 Esposito M, Ochoa M A and Galperin M2015 Phys. Rev. X 114 080602
13 Katz G and Kosloff R 2016 Entropy 18 186
14 Dou W J, Ochoa M A, Nitzan A and Subotnik J E 2018 Phys. Rev. B 98 134306
15 Llobet M P, Wilming H, Riera A, Gallego R and Eisert J 2018 Phys. Rev. Lett. 120 120602
16 Goyal K and Kawai R 2019 Phys. Rev. Research 1 033018
17 Strasberg P 2019 Phys. Rev. Lett. 123 180604
18 Rivas A 2020 Phys. Rev. Lett. 124 160601
19 Segal D 2006 Phys. Rev. B 73 205415
20 Nicolin L and Segal D 2011 Phys. Rev. B 84 161414
21 Nicolin L and Segal D 2011 J. Chem. Phys. 135 164106
22 Kato A and Tanimura Y 2015 J. Chem. Phys. 143 064107
23 Wang C, Ren J and Cao J S 2015 Sci. Rep. 5 11787
24 Wang C, Ren J and Cao J S 2017 Phys. Rev. A 95 023610
25 Liu J J, Xu H, Li B and Wu C Q 2017 Phys. Rev. E 96 012135
26 Mu A Q, Agarwalla B K, Schaller G and Segal D 2017 New J. Phys. 19 123034
27 Brenes M, Mendoza-Arenas J J, Purkayastha A, Mitchison M T, Clark S R and Goold J2020 Phys. Rev. X 10 031040
28 Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
29 Xu D Z and Cao J S 2016 Front. Phys. 11 110308
30 Zheng H, Zhu S Y and Zubairy M S 2008 Phys. Rev. Lett. 101 200404
31 Li Z H, Wang D W, Zheng H, Zhu S Y and Zubairy M Z 2009 Phys. Rev. A 80 023801
32 Cao X F, You J Q, Zheng H, Kofman A G and Nori F 2010 Phys. Rev. A 82 022119
33 Ai Q, Li Y, Zheng H and Sun C P 2010 Phys. Rev. A 81 042116
34 Dijkstra A G and Tanimura Y 2010 Phys. Rev. Lett. 104 250401
35 J. Ma, Z. Sun, Wang X G and Nori F 2012 Phys. Rev. A 85 062323
36 Wang C and Chen Q H 2013 New J. Phys. 15 103020
37 Li Y, Evers J, Zheng H and Zhu S Y 2012 Phys. Rev. A 85 053830
38 Li Y, Evers J, Feng W and Zhu S Y 2013 Phys. Rev. A 87 053837
39 Yang S, Al-Amri M, Zhu S Y and Zubairy M S 2013 Phys. Rev. A 87 033818
40 Lee C K, Cao J S and Gong J B 2012 Phys. Rev. E 86 021109
41 Xu D Z, Li S W, Liu X F and Sun C P 2014 Phys. Rev. E 90 062125
42 Lles-Smith J, Lambert N and Nazir A 2014 Phys. Rev. A 90 032114
43 Forn-D\'iaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 025005
44 Kockum A F, Miranowicz A, Liberato S De, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19
45 Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, H\"ummer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
46 Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S and Semba K 2017 Nat. Phys. 13 44
47 Fan L B, Zhou Y H, Zou F, Guo H, Huang J F and Liao J Q 2020 Annalen der Physik 532 2000134
48 Majland M, Christensen K S and Zinner N T 2020 Phys. Rev. B 101 184510
49 Wang C, Wang L Q and Ren J 2021 Chin. Phys. Lett. 38 010501
50 Ridolfo A, Lieb M, Savasta S and Hartmann M J 2012 Phys. Rev. Lett. 109 193602
51 Ridolfo A, Savasta S and Hartmann M J 2013 Phys. Rev. Lett. 110 163601
52 Stassi R, Ridolfo A, Stefano O Di, Hartmann M J and Savasta S 2013 Phys. Rev. Lett. 110 243601
53 Segal D and Nitzan A 2005 Phys. Rev. Lett. 94 034301
54 Segal D 2008 Phys. Rev. Lett. 101 260601
55 Ren J, H\"anggi P and Li B 2010 Phys. Rev. Lett. 104 170601
56 Chen T, Ren J and Wang X B 2012 Phys. Rev. B 87 144303
57 Joulain K, Drevillon K, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601
58 Guo B Q, Liu T and Yu C S 2018 Phys. Rev. E 98 022118
59 Guo B Q, Liu T and Yu C S 2019 Phys. Rev. E 99 032112
60 Du J Y, Sheng W, Su S H and Chen J C 2019 Phys. Rev. E 99 062123
61 Wang C, Chen X M, Sun K W and Ren J 2018 Phys. Rev. A 97 052112
62 Liu H, Wang C, Wang L Q and Ren J 2019 Phys. Rev. E 99 032114
63 Yang H F and Tan Y G 2020 J. Phys. B 53 205504
64 Wang C and Xu D Z 2020 Chin. Phys. B 29 080504
65 Long Y, Ren J and Chen H 2018 Proc. Natl. Acad. Sci. USA 115 9951
66 Shi C Z, Zhao R K, Long Y, et al. 2019 Natl. Sci. Rev. 6 707
67 Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
68 Ren J, Zhu J X, Gubernatis J E, Wang C and Li B 2012 Phys. Rev. B 85 155443
69 Wang C, Ren J, Li B and Chen Q H 2012 Eur. Phys. J. B 85 110
70 Stadler P, Belzig W and Rastelli G 2014 Phys. Rev. Lett. 113 047201
71 Ren J 2013 Phys. Rev. B 88 220406
72 Ren J and Zhu J X 2013 Phys. Rev. B 88 094427
73 Matsuo M, Ohnuma Y, Kato T and Maekawa S 2018 Phys. Rev. Lett. 120 037201
74 Billangeon P -M, Tsai J S and Nakamura Y 2015 Phys. Rev. B 91 094517
75 Richer S and Vincenzo D Di 2016 Phys. Rev. B 93 134501
76 Wang X, Miranowicz A, Li H R and Nori F 2016 Phys. Rev. A 94 053858
77 Wang X, Miranowicz A, Li H R and Nori F 2017 Phys. Rev. A 96 063820
78 Garg A, Onuchic J N and Ambegaokar V 1985 J. Chem. Phys. 83 4491
79 Thoss M, Wang H and Miller W H 2001 J. Chem. Phys. 115 2991
80 lles-Smith J, Lambert N and Nazir A 2014 Phys. Rev. A 90 032114
81 Schaller G, Giusteri G G and Celardo G L 2016 Phys. Rev. E 94 032135
82 Strasberg P, Schaller G, Schmidt T L and Esposito M 2018 Phys. Rev. B 97 205405
83 Settineri A, Macri V, Ridolfo A, Stefano O Di, Kockum A F, Nori F and Savasta S 2018 Phys. Rev. A 98 053834
84 Esposito M, Harbola U and Mukamel S2009 Rev. Mod. Phys. 81 1665
85 Song L Z and Shi Q 2017 Phys. Rev. B 95 064308
86 Friedman H M, Agarwalla B K and Segal D 2018 New J. Phys. 20 083026
87 Levitov L and Lesovik G1992 JETP Lett. 55 555
88 Levitov L, Lee H and Lesovik G 1996 J. Math. Phys. 37 4845
89 Glauber R J 1963 Phys. Rev. 130 2529
90 Carmichael H J2008 Statistical Methods in Quantum Optics 2(Berlin: Springer)
91 Garziano L, Ridolfo A, Stassi R, Stefano O Di and Savasta S 2013 Phys. Rev. A 88 063829
92 Pagel D, Alvermann A and Fehske H 2015 Phys. Rev. A 91 043814
93 Bin Q, L\"u X Y, Yin T S, Li Y and Wu Y 2019 Phys. Rev. A 99 033809
94 Xu H G, Wang C and Gao X L 2020 J. Phys. B 53 155406
[1] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[2] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[3] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[4] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[5] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[6] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[7] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[8] Quantifying quantum non-Markovianity via max-relative entropy
Yu Luo(罗宇), Yongming Li(李永明). Chin. Phys. B, 2019, 28(4): 040301.
[9] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[10] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
[11] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[12] Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries
Zhizhou Yu(俞之舟), Fuming Xu(许富明). Chin. Phys. B, 2018, 27(12): 127203.
[13] Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices
Zhiyuan Ma(马志远), Ying Li(李莹), Xian-Jiang Song(宋贤江), Zhi Yang(杨致), Li-Chun Xu(徐利春), Ruiping Liu(刘瑞萍), Xuguang Liu(刘旭光), Dianyin Hu(胡殿印). Chin. Phys. B, 2017, 26(6): 067201.
[14] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[15] Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Hao Wang(王昊), Qi-feng Lyu(吕奇峰), Wang Zhang(张望), Xiang Yang(杨香), Fu-Hua Yang(杨富华). Chin. Phys. B, 2016, 25(6): 068103.
No Suggested Reading articles found!