Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
SPECIAL TOPIC—Phononics and phonon engineering |
Prev
Next
|
|
|
Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system |
Chen Wang(王晨)1,†, Lu-Qin Wang(王鲁钦)2, and Jie Ren(任捷)2,‡ |
1 Department of Physics, Zhejiang Normal University, Jinhua 321004, China; 2 Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
Abstract Counter-rotating-wave terms (CRWTs) are traditionally viewed to be crucial in open small quantum systems with strong system-bath dissipation. Here by exemplifying in a nonequilibrium qubit-phonon hybrid model, we show that CRWTs can play the significant role in quantum heat transfer even with weak system-bath dissipation. By using extended coherent phonon states, we obtain the quantum master equation with heat exchange rates contributed by rotating-wave-terms (RWTs) and CRWTs, respectively. We find that including only RWTs, the steady state heat current and current fluctuations will be significantly suppressed at large temperature bias, whereas they are strongly enhanced by considering CRWTs in addition. Furthermore, for the phonon statistics, the average phonon number and two-phonon correlation are nearly insensitive to strong qubit-phonon hybridization with only RWTs, whereas they will be dramatically cooled down via the cooperative transitions based on CRWTs in addition. Therefore, CRWTs in quantum heat transfer system should be treated carefully.
|
Received: 30 September 2020
Revised: 25 November 2020
Accepted manuscript online: 02 December 2020
|
PACS:
|
05.60.Gg
|
(Quantum transport)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704093, 11775159, and 11935010), the Natural Science Foundation of Shanghai, China (Grant Nos. 18ZR1442800 and 18JC1410900), and the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology. |
Corresponding Authors:
†Corresponding author. E-mail: wangchenyifang@gmail.com ‡Corresponding author. E-mail: Xonics@tongji.edu.cn
|
Cite this article:
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷) Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system 2021 Chin. Phys. B 30 030506
|
1 Chen G2005 Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press). 2 Dubi Y and Ventra M D 2011 Rev. Mod. Phys. 83 131 3 Li N B, Ren J, Wang L, Zhang G, H\"anggi P and Li B W 2012 Rev. Mod. Phys. 84 1045 4 Breuer H P and Petruccione F2007 The theory of open quantum systems (London: Oxford University Press) 5 Weiss U2008 Quantum dissipative systems (Singapore: World Scientific) 6 Lles-Smith J, Dijkstra A G, Lambert N and Nazir A 2016 J. Chem. Phys. 144 044110 7 Carrega M, Solinas P, Sassetti M and Weiss U 2016 Phys. Rev. Lett. 116 240403 8 Kato A and Tanimura Y 2016 J. Chem. Phys. 145 224105 9 Cerrillo J, Buser M and Brandes T 2016 Phys. Rev. B 94 214308 10 Maguire H, Lles-Smith J and Nazir A 2019 Phys. Rev. Lett. 123 093601 11 Dou W J, B\"atge J, Levy M and Thoss M 2020 Phys. Rev. B 101 184304 12 Esposito M, Ochoa M A and Galperin M2015 Phys. Rev. X 114 080602 13 Katz G and Kosloff R 2016 Entropy 18 186 14 Dou W J, Ochoa M A, Nitzan A and Subotnik J E 2018 Phys. Rev. B 98 134306 15 Llobet M P, Wilming H, Riera A, Gallego R and Eisert J 2018 Phys. Rev. Lett. 120 120602 16 Goyal K and Kawai R 2019 Phys. Rev. Research 1 033018 17 Strasberg P 2019 Phys. Rev. Lett. 123 180604 18 Rivas A 2020 Phys. Rev. Lett. 124 160601 19 Segal D 2006 Phys. Rev. B 73 205415 20 Nicolin L and Segal D 2011 Phys. Rev. B 84 161414 21 Nicolin L and Segal D 2011 J. Chem. Phys. 135 164106 22 Kato A and Tanimura Y 2015 J. Chem. Phys. 143 064107 23 Wang C, Ren J and Cao J S 2015 Sci. Rep. 5 11787 24 Wang C, Ren J and Cao J S 2017 Phys. Rev. A 95 023610 25 Liu J J, Xu H, Li B and Wu C Q 2017 Phys. Rev. E 96 012135 26 Mu A Q, Agarwalla B K, Schaller G and Segal D 2017 New J. Phys. 19 123034 27 Brenes M, Mendoza-Arenas J J, Purkayastha A, Mitchison M T, Clark S R and Goold J2020 Phys. Rev. X 10 031040 28 Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1 29 Xu D Z and Cao J S 2016 Front. Phys. 11 110308 30 Zheng H, Zhu S Y and Zubairy M S 2008 Phys. Rev. Lett. 101 200404 31 Li Z H, Wang D W, Zheng H, Zhu S Y and Zubairy M Z 2009 Phys. Rev. A 80 023801 32 Cao X F, You J Q, Zheng H, Kofman A G and Nori F 2010 Phys. Rev. A 82 022119 33 Ai Q, Li Y, Zheng H and Sun C P 2010 Phys. Rev. A 81 042116 34 Dijkstra A G and Tanimura Y 2010 Phys. Rev. Lett. 104 250401 35 J. Ma, Z. Sun, Wang X G and Nori F 2012 Phys. Rev. A 85 062323 36 Wang C and Chen Q H 2013 New J. Phys. 15 103020 37 Li Y, Evers J, Zheng H and Zhu S Y 2012 Phys. Rev. A 85 053830 38 Li Y, Evers J, Feng W and Zhu S Y 2013 Phys. Rev. A 87 053837 39 Yang S, Al-Amri M, Zhu S Y and Zubairy M S 2013 Phys. Rev. A 87 033818 40 Lee C K, Cao J S and Gong J B 2012 Phys. Rev. E 86 021109 41 Xu D Z, Li S W, Liu X F and Sun C P 2014 Phys. Rev. E 90 062125 42 Lles-Smith J, Lambert N and Nazir A 2014 Phys. Rev. A 90 032114 43 Forn-D\'iaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 025005 44 Kockum A F, Miranowicz A, Liberato S De, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19 45 Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, H\"ummer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772 46 Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S and Semba K 2017 Nat. Phys. 13 44 47 Fan L B, Zhou Y H, Zou F, Guo H, Huang J F and Liao J Q 2020 Annalen der Physik 532 2000134 48 Majland M, Christensen K S and Zinner N T 2020 Phys. Rev. B 101 184510 49 Wang C, Wang L Q and Ren J 2021 Chin. Phys. Lett. 38 010501 50 Ridolfo A, Lieb M, Savasta S and Hartmann M J 2012 Phys. Rev. Lett. 109 193602 51 Ridolfo A, Savasta S and Hartmann M J 2013 Phys. Rev. Lett. 110 163601 52 Stassi R, Ridolfo A, Stefano O Di, Hartmann M J and Savasta S 2013 Phys. Rev. Lett. 110 243601 53 Segal D and Nitzan A 2005 Phys. Rev. Lett. 94 034301 54 Segal D 2008 Phys. Rev. Lett. 101 260601 55 Ren J, H\"anggi P and Li B 2010 Phys. Rev. Lett. 104 170601 56 Chen T, Ren J and Wang X B 2012 Phys. Rev. B 87 144303 57 Joulain K, Drevillon K, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601 58 Guo B Q, Liu T and Yu C S 2018 Phys. Rev. E 98 022118 59 Guo B Q, Liu T and Yu C S 2019 Phys. Rev. E 99 032112 60 Du J Y, Sheng W, Su S H and Chen J C 2019 Phys. Rev. E 99 062123 61 Wang C, Chen X M, Sun K W and Ren J 2018 Phys. Rev. A 97 052112 62 Liu H, Wang C, Wang L Q and Ren J 2019 Phys. Rev. E 99 032114 63 Yang H F and Tan Y G 2020 J. Phys. B 53 205504 64 Wang C and Xu D Z 2020 Chin. Phys. B 29 080504 65 Long Y, Ren J and Chen H 2018 Proc. Natl. Acad. Sci. USA 115 9951 66 Shi C Z, Zhao R K, Long Y, et al. 2019 Natl. Sci. Rev. 6 707 67 Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801 68 Ren J, Zhu J X, Gubernatis J E, Wang C and Li B 2012 Phys. Rev. B 85 155443 69 Wang C, Ren J, Li B and Chen Q H 2012 Eur. Phys. J. B 85 110 70 Stadler P, Belzig W and Rastelli G 2014 Phys. Rev. Lett. 113 047201 71 Ren J 2013 Phys. Rev. B 88 220406 72 Ren J and Zhu J X 2013 Phys. Rev. B 88 094427 73 Matsuo M, Ohnuma Y, Kato T and Maekawa S 2018 Phys. Rev. Lett. 120 037201 74 Billangeon P -M, Tsai J S and Nakamura Y 2015 Phys. Rev. B 91 094517 75 Richer S and Vincenzo D Di 2016 Phys. Rev. B 93 134501 76 Wang X, Miranowicz A, Li H R and Nori F 2016 Phys. Rev. A 94 053858 77 Wang X, Miranowicz A, Li H R and Nori F 2017 Phys. Rev. A 96 063820 78 Garg A, Onuchic J N and Ambegaokar V 1985 J. Chem. Phys. 83 4491 79 Thoss M, Wang H and Miller W H 2001 J. Chem. Phys. 115 2991 80 lles-Smith J, Lambert N and Nazir A 2014 Phys. Rev. A 90 032114 81 Schaller G, Giusteri G G and Celardo G L 2016 Phys. Rev. E 94 032135 82 Strasberg P, Schaller G, Schmidt T L and Esposito M 2018 Phys. Rev. B 97 205405 83 Settineri A, Macri V, Ridolfo A, Stefano O Di, Kockum A F, Nori F and Savasta S 2018 Phys. Rev. A 98 053834 84 Esposito M, Harbola U and Mukamel S2009 Rev. Mod. Phys. 81 1665 85 Song L Z and Shi Q 2017 Phys. Rev. B 95 064308 86 Friedman H M, Agarwalla B K and Segal D 2018 New J. Phys. 20 083026 87 Levitov L and Lesovik G1992 JETP Lett. 55 555 88 Levitov L, Lee H and Lesovik G 1996 J. Math. Phys. 37 4845 89 Glauber R J 1963 Phys. Rev. 130 2529 90 Carmichael H J2008 Statistical Methods in Quantum Optics 2(Berlin: Springer) 91 Garziano L, Ridolfo A, Stassi R, Stefano O Di and Savasta S 2013 Phys. Rev. A 88 063829 92 Pagel D, Alvermann A and Fehske H 2015 Phys. Rev. A 91 043814 93 Bin Q, L\"u X Y, Yin T S, Li Y and Wu Y 2019 Phys. Rev. A 99 033809 94 Xu H G, Wang C and Gao X L 2020 J. Phys. B 53 155406 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|