Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034304    DOI: 10.1088/1674-1056/ac744c

Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia

Yundong Tang(汤云东)1,†, Jian Zou(邹建)1, Rodolfo C.C. Flesch2, and Tao Jin(金涛)3
1 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China;
2 Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil;
3 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
Abstract  Thermal damage of malignant tissue is generally determined not only by the characteristics of bio-tissues and nanoparticles but also the nanofluid concentration distributions due to different injection methods during magnetic hyperthermia. The latter has more advantages in improving the therapeutic effect with respect to the former since it is a determining factor for the uniformity of nanofluid concentration distribution inside the tumor region. This study investigates the effect of bio-tissue deformation due to intratumoral injection on the thermal damage behavior and treatment temperature distribution during magnetic hyperthermia, in which both the bio-tissue deformation due to nanofluid injection and the mass diffusion after injection behavior are taken into consideration. The nanofluid flow behavior is illustrated by two different theoretical models in this study, which are Navier-Stokes equation inside syringe needle and modified Darcy's law inside bio-tissue. The diffusion behavior after nanofluid injection is expressed by a modified convection-diffusion equation. A proposed three-dimensional liver model based on the angiographic data is set to be the research object in this study, in which all bio-tissues are assumed to be deformable porous media. Simulation results demonstrate that the injection point for syringe needle can generally achieve the maximum value in the tissue pressure, deformation degree, and interstitial flow velocity during the injection process, all of which then drop sharply with the distance away from the injection center. In addition to the bio-tissue deformation due to injection behavior, the treatment temperature is also highly relevant to determine both the diffusion duration and blood perfusion rate due to the thermal damage during the therapy.
Keywords:  tissue deformation      thermal apoptosis analysis      heat transfer      mass transfer  
Received:  07 March 2022      Revised:  10 May 2022      Accepted manuscript online:  29 May 2022
PACS:  44.10.+i (Heat conduction)  
  44.05.+e (Analytical and numerical techniques)  
  87.85.J- (Biomaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071124), the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01464), the Education Department of Fujian Province, China (Grant No. JAT190013), and the Conselho Nacional de Desenvolvimento Cientifico e Tecnoloico (BR) (CNPq) (Grant No. 309244/2018-8).
Corresponding Authors:  Yundong Tang     E-mail:

Cite this article: 

Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛) Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia 2023 Chin. Phys. B 32 034304

[1] Li K, Xu J W, Li P and Fan Y B 2022 Compos. Pt. B-Eng. 228 109401
[2] Astefanoaei I, Dumitru I, Stancu A and Chiriac H 2014 Chin. Phys. B 23 044401
[3] Mona L P, Songca S P and Ajibade P A 2021 Nanotechnol. Rev. 11 176
[4] Tozri A, Alhalafi S, Alrowaili Z A, Horchani M, Omri A, Skini R, Ghorai S, Benali A, Costa B F O and Ildiz G O 2022 J. Alloys Compd. 890 161739
[5] Sokolovskaya O I, Sergeeva E A, Golovan L A, Kashkarov P K, Khilov A V, Kurakina D A, Orlinskaya N Y, Zabotnov S V and Kirillin M Y 2021 Photonics 8 580
[6] Rezanezhad A, Hajalilou A, Eslami F, Parvini E, Abouzari-Lotf E and Aslibeiki B 2021 J. Mater. Sci. Mater. Electron. 32 24026
[7] Tang Y D, Flesch R C C, Jin T and He M H 2021 Int. J. Heat Mass Transfer. 178 121609
[8] Tang Y D, Jin T and Flesch R C C 2017 IEEE Trans. Magn. 53 5400106
[9] Wang Q L and Chen Y Y 2020 Chin. Phys. B 29 084402
[10] Hervault A and Thanh N T K 2014 Nanoscale 6 11553
[11] Zhai Y, Xie H and Gu H 2009 Int. J. Hyperthermia 25 65
[12] Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R and Jordan A 2007 J. Neurooncol. 81 53
[13] Wu L, Cheng J J, Liu W Z and Chen X G 2015 IEEE Trans. Magn. 51 4600204
[14] Astefanoaei I, Dumitru I, Chiriac H and Stancu A 2014 IEEE Trans. Magn. 50 7400904
[15] Astefanoaei I, Stancu A and Chiriac H 2017 Eur. Phys. J. Plus 132 89
[16] LeBrun A, Manuchehrabadi N, Attaluri A, Wang F, Ma R H and Zhu L 2013 Int. J. Hyperthermia 29 730
[17] Astefanoaei I and Stancu A 2017 J. Appl. Phys. 122 164701
[18] Di Michele F, Pizzichelli G, Mazzolai B and Sinibaldi E 2015 Math. Biosci. 262 105
[19] Singh M, Ma R H and Zhu L 2021 Int. Commun. Heat Mass Transf. 126 105393
[20] Detournay E and Cheng A H D 1993 Analysis and Design Methods (Oxford: Pergamon) p. 113
[21] Stoverud K H, Darcis M, Helmig R and Hassanizadeh S M 2012 Transp. Porous Media 92 119
[22] Socrates D 2017 Modelling Organs, Tissues, Cells and Devices (Switzerland: Springer) p. 281
[23] Basser P J 1992 Microvasc. Res. 44 143
[24] Chen Z J, Broaddus W C, Viswanathan R R, Raghavan R and Gillies G T 2002 IEEE Trans. Biomed. Eng. 49 85
[25] Hommel J, Coltman E and Class H 2018 Transp. Porous Media 124 589
[26] Netti P A, Baxter L T, Boucher Y, Skalak R and Jain R K 1997 AICHE J. 43 818
[27] Soltani M and Chen P 2011 PLoS One 6 e20344
[28] Sefidgar M, Soltani M, Raahemifar K, Bazmara H, Nayinian S M M and Bazargan M 2014 J. Biol. Eng. 8 12
[29] Sefidgar M, Soltani M, Raahemifar K, Sadeghi M, Bazmara H, Bazargan M and Naeenian M M 2015 Microvasc. Res. 99 43
[30] Moghadam M C, Deyranlou A, Sharifi A and Niazmand H 2015 Microvasc. Res. 101 62
[31] Zhang A L, Mi X P, Yang G and Xu L X 2009 J. Heat Transf. Trans. ASME 131 043209
[32] Pizzichelli G, Di Michele F and Sinibaldi E 2016 Math. Biosci. 272 6
[33] Pennes H H 1998 J. Appl. Physiol. 85 5
[34] Rabienejhad M J, Mazaheri A and Davoudi-Darareh M 2021 Chin. Phys. B 30 048401
[35] Li Y Y and Zhang H C 2020 Chin. Phys. B 29 084401
[36] Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
[37] Li W Y, Li W T, Li B Q, Dong L J, Meng T H, Huo G, Liang G Y and Lu X G 2021 Chin. Phys. B 30 104402
[38] Purdie T G, Lee T Y, Iizuka M and Sherar M D 2000 Phys. Med. Biol. 45 1115
[39] Marek P 2018 Int. J. Therm. Sci. 130 507
[40] Gas P and Wyszkowska J 2019 Arch. Electr. Eng. 68 521
[41] Paruch M 2020 Materials 13 136
[42] Sun J H, Luo Q, Liu L L, Zhang B Y, Shi Y S, Ju Y and Song G B 2016 J. Biomech. 49 45
[43] Wu M, Frieboes H B, McDougall S R, Chaplain M A J, Cristini V and Lowengrub J 2013 J. Theor. Biol. 320 131
[44] Zheng F D, Hou P, Corpstein C D, Xing L and Li T L 2021 Pharm. Res. 38 607
[45] Garcia J J and Smith J 2009 Ann. Biomed. Eng. 37 375
[46] Hou P, Zheng F, Corpstein C D, Xing L and Li T 2021 Pharm. Res. 38 1011
[1] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[2] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[3] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[4] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[5] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[6] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[7] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[8] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[9] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[10] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[11] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[12] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
[13] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
[14] Three-dimensional human thermoregulation model based on pulsatile blood flow and heating mechanism
Si-Na Dang(党思娜), Hong-Jun Xue(薛红军), Xiao-Yan Zhang(张晓燕), Jue Qu(瞿珏), Cheng-Wen Zhong(钟诚文), Si-Yu Chen(陈思宇). Chin. Phys. B, 2018, 27(11): 114402.
[15] Heat transfer enhancement in MOSFET mounted on different FR4 substrates by thermal transient measurement
Norazlina M S, Dheepan Chakravarthii M K, Shanmugan S, Mutharasu D, Shahrom Mahmud. Chin. Phys. B, 2017, 26(9): 098901.
No Suggested Reading articles found!