Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030504    DOI: 10.1088/1674-1056/abe3e3
RAPID COMMUNICATION Prev   Next  

Transport property of inhomogeneous strained graphene

Bing-Lan Wu(吴冰兰)1, Qiang Wei(魏强)2, Zhi-Qiang Zhang(张智强)1,†, and Hua Jiang(江华)1,3,
1 School of Physics and Technology, Soochow University, Suzhou 215006, China; 2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 3 Institute for Advanced Study, Soochow University, Suzhou 215006, China
Abstract  In analogy to real magnetic field, the pseudo-magnetic field (PMF) induced by inhomogeneous strain can also form the Landau levels and edge states. In this paper, the transport properties of graphene under inhomogeneous strain are studied. We find that the Landau levels have non-zero group velocity, and construct one-dimensional conducting channels. In addition, the edge states and the Landau level states in PMF are both fragile under disorder. We also confirm that the backscattering of these states could be suppressed by applying a real magnetic filed (MF). Therefore, the transmission coefficient for each conducting channel can be manipulated by adjusting the MF strength, which indicates the application of switching devices.
Keywords:  disorder effect      pseudo-magnetic field      strain      transport properties  
Received:  14 November 2020      Revised:  01 January 2021      Accepted manuscript online:  07 February 2021
PACS:  05.50.+q (Lattice theory and statistics)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0308403) and the National Natural Science Foundation of China (Grant No. 11822407).
Corresponding Authors:  Corresponding author. E-mail: zqzhang2018@stu.suda.edu.cn Corresponding author. E-mail: jianghuaphy@suda.edu.cn   

Cite this article: 

Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华) Transport property of inhomogeneous strained graphene 2021 Chin. Phys. B 30 030504

1 Vozmediano M A H, Katsnelson M I and Guinea F 2010 Phys. Rep. 496 109
2 Goerbig M O2011 Rev. Mod. Phys. 83 1193
3 Manes J L, Juan F D, Sturla M and Vozmediano M A H 2013 Phys. Rev. B 87 165131
4 Kitt A L, Pereira V M, Swan A K and Goldberg B B 2012 Phys. Rev. B 85 115432
5 Guinea F, Katsnelson M I and Geim A K 2009 Nat. Phys. 6 30
6 Low T and Guinea F 2010 Nano Lett. 10 3551
7 Moldovan D, Masir M R and Peeters F M 2013 Phys. Rev. B 88 035446
8 Stegmann T and Szpak N2016 New J. Phys. 18 125422
9 Carrillo-Bastos R, Le\'on C, Faria D, Latg\'e A, Andrei E Y and Sandler N 2016 Phys. Rev. B 94 125422
10 Torres V, Faria D and Latg\'e A 2018 Phys. Rev. B 97 165429
11 Zhai F, Ma Y and Chang K 2011 New J. Phys. 13 083029
12 Zhang D B, Seifert G and Chang K 2014 Phys. Rev. Lett. 112 96805
13 Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 46601
14 Wu Z, Zhai F, Peeters F M, Xu H and Chang K 2011 Phys. Rev. Lett. 106 176802
15 Chaves A, Covaci L, Rakhimov K yu, Farias G A and Peeters F M 2010 Phys. Rev. B. 82 205430
16 Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C and Novoselov K S 2011 Appl. Phys. Lett. 99 93103
17 Klimov N N, Jung S, Zhu S, Li T, Wright C A, Solares S D, Newell D B, Zhitenev N B and Stroscio J A 2012 Science 336 1557
18 Jang W J, Kim H, Shin Y R, Wang M, Jang S K, Kim M, Lee S, Kim S W, Song Y J and Kahng S J 2014 Carbon 74 139
19 Lim H, Jung J, Ruoff R S and Kim Y 2015 Nat. Commun. 6 8601
20 Yan H, Sun Y, He L, Nie J C and Chan M H W 2012 Phys. Rev. B 85 35422
21 Nemes-Incze P, Kukucska G, Koltai J, K\'urti J, Hwang C, Tapaszt\'o L and Bir\'o L P 2017 Sci. Rep. 7 3035
22 Neek-Amal M and Peeters F M 2012 Phys. Rev. B 85 195445
23 Neek-Amal M, Covaci L, Shakouri K and Peeters F M 2013 Phys. Rev. B 88 115428
24 Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Neto A H C and Crommie M F 2010 Science 329 544
25 Yeh N C, Teague M L, Yeom S, Standley B L, Wu R T P, Boyd D A and Bockrath M W 2011 Surf. Sci. 605 1649
26 Gomes K K, Mar W, Ko W, Guinea F and Manoharan H C 2012 Nature 483 306
27 Rechtsman M C, Zeuner J M, T\'unnermann A, Nolte S, Segev M and Szameit A 2013 Nat. Photon. 7 153
28 Schomerus H and Halpern N Y 2013 Phys. Rev. Lett. 110 13903
29 Brendel C, Peano V, Painter O and Marquardt F2017 Bulletin of the American Physical Society 2017
30 Abbaszadeh H, Souslov A, Paulose J, Schomerus H and Vitelli V 2017 Phys. Rev. Lett. 119 195502
31 Yang Z, Gao F, Yang Y and Zhang B 2017 Phys. Rev. Lett. 118 194301
32 Wen X, Qiu C, Qi Y, Ye L, Ke M, Zhang F and Liu Z 2019 Nat. Phys. 15 352
33 Thouless D J, Kohmoto M, Nightingale M P and Nijs M D1982 Phys. Rev. Lett. 49 41
34 Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
35 Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
36 Halperin B I 1982 Phys. Rev. B 25 2185
37 Mucha-Kruczynski M and Fal'ko V I 2012 Solid State Commun. 152 1442
38 Gradinar D A, Mucha-Kruczy\'nski M, Schomerus H and Fal'Ko V I 2013 Phys. Rev. Lett. 110 266801
39 Settnes M, Leconte N, Barrios-Vargas J E, Jauho A P and Roche S2016 D Mater. 3 34005
40 Roy B, Hu Z X and Yang K 2013 Phys. Rev. B 87 121408
41 Ghaemi P, Gopalakrishnan S and Ryu S 2013 Phys. Rev. B 87 155422
42 Costa D R da, Chaves A, Farias G A, Covaci L and Peeters F M 2012 Phys. Rev. B 86 115434
43 Mao J, Milovanovi\'c S P, An\=delkovi\'c M, Lai X Y, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, and Geim A K 2020 Nature 584 215
44 Settnes M, Garcia J H and Roche S2017 2D Mater. 4 31006
45 Anderson P W 1958 Phys. Rev. 109 1492
46 Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
47 Pereira V M, Castro Neto A H, Peres N M R 2008 Phys. Rev. B. 80 045401
48 For zigzag graphene, the K and K' valleys are well separated in momentum space.Thus, PMFs for these two valleys are +B and -B, respectively. In contrast, for armchair graphene, both K and K' with opposite PMFs are folded into the \varGamma point, and the strong coupling of the two valleys greatly weaks the strain effect. Therefore, for armchair ribbons, the LLs and the chiral edge states will be formed by applying a real magnetic field, and the strain just tilt the LLs (except the zeroth LL) without affecting the properties of the edge state.
49 Lewenkopf C H and Mucciolo E R 2013 J. Comput. Electron. 12 203
50 Datta S1995 Electronic transport in mesoscopic systems, 2nd Edn.
51 Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
52 Zhang H, Liu C, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
53 Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
54 Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
55 Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T2018 Sci. Adv. 4 6
56 Jiang H, Wang L, Sun Q F and Xie X C 2009 Phys. Rev. B 80 165316
57 Faria D, Le\'on C, Lima L R F, Latg\'e A and Sandler N 2020 Phys. Rev. B 101 81410
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[7] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[10] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[11] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[12] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[13] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
No Suggested Reading articles found!