CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study |
Ya-Kui Weng(翁亚奎)1,†, Meng-Lan Shen(沈梦兰)2, Jie Li(李杰)3, and Xing-Ao Li(李兴鳌)1,‡ |
1 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 Grünberg Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract As one of intriguing physical results of electronic reconstruction, the metal-insulator transition plays an important role in exploring new electronic devices. In this study, the density functional theory is employed to investigate the metal-insulator transition in (LaTiO3)m/(CaVO3)n superlattices. Herein, three kinds of physical avenues, i.e., stacking orientation, epitaxial strain, and thickness periods, are used to tune the metal-insulator transition. Our calculations find that the [001]-and [110]-oriented (LaTiO3)1/(CaVO3)1 superlattices on SrTiO3 substrate are insulating, while [111]-oriented case is metallic. Such metallic behavior in [111] orientation can also be modulated by epitaxial strain. Besides the structural orientation and strain effect, the highly probable metal-insulator transition is presented in (LaTiO3)m/(CaVO3)n superlattices with increasing thickness. In addition, several interesting physical phenomena have also been revealed, such as selective charge transfer, charge ordering, and orbital ordering.
|
Received: 14 May 2020
Revised: 12 October 2020
Accepted manuscript online: 17 October 2020
|
PACS:
|
73.21.Cd
|
(Superlattices)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804168 and 51872145), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20180736 and BK20190726), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJB140009), and the Science Foundation from Nanjing University of Posts and Telecommunications, China (Grant No. NY219026). |
Corresponding Authors:
†Corresponding author. E-mail: wyk@njupt.edu.cn ‡Corresponding author. E-mail: lixa@njupt.edu.cn
|
Cite this article:
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌) Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study 2020 Chin. Phys. B 29 127303
|
[1] Dagotto E Science 309 257 DOI: 10.1126/science.11075592005 [2] Dong S, Liu J M, Cheong S W and Ren Z Adv. Phys. 64 519 DOI: 10.1080/00018732.2015.11143382015 [3] Dong S and Liu J M Mod. Phys. Lett. B 26 1230004 DOI: 10.1142/S02179849123000492012 [4] Picozzi S and Ederer C J. Phys.: Condens. Matter 21 303201 DOI: 10.1088/0953-8984/21/30/3032012009 [5] Imada M, Fujimori A and Tokura Y Rev. Mod. Phys. 70 1039 DOI: 10.1103/RevModPhys.70.10391998 [6] Kim B, Liu P, Tomczak J M and Franchini C Phys. Rev. B 98 075130 DOI: 10.1103/PhysRevB.98.0751302018 [7] Golalikhani M, Lei Q, Chandrasena R, Kasaei L, Park H, Bai J, Orgiani P, Ciston J, Sterbinsky G, Arena D, Shafer P, Arenholz E, Davidson B, Millis A, Gray A and Xi X Nat. Commun. 9 2206 DOI: 10.1038/s41467-018-04546-52018 [8] Paul A, Mukherjee A, Dasgupta I, Paramekanti A and Dasgupta T S Phys. Rev. Lett. 122 016404 DOI: 10.1103/PhysRevLett.122.0164042019 [9] Peil O E, Hampel A, Ederer C and Georges A Phys. Rev. B 99 245127 DOI: 10.1103/PhysRevB.99.2451272019 [10] Shen M L, Weng Y K, Yi Y W, Geng Q F, Yan W, Wang H Y, Yang J P and Li X A J. Appl. Phys. 126 085307 DOI: 10.1063/1.51020762019 [11] Liu H D Chin. Phys. B 28 107102 DOI: 10.1088/1674-1056/ab42792019 [12] Yang L J, Wu L Z and Dong S Chin. Phys. B 24 127702 DOI: 10.1088/1674-1056/24/12/1277022015 [13] Guo H W, Noh J, Dong S, Rack P, Gai Z, Xu X S, Dagotto E, Shen J and Ward T Nano Lett. 13 3749 DOI: 10.1021/nl40168422013 [14] Saleem M S, Song C, Peng J J, Cui B, Li F, Gu Y D and Panb F Appl. Phys. Lett. 110 072406 DOI: 10.1063/1.49767002017 [15] Beck S, Sclauzero G, Chopra U and Ederer C Phys. Rev. B 97 075107 DOI: 10.1103/PhysRevB.97.0751072018 [16] Ruzmetov D, Gopalakrishnan G, Ko C, Narayanamurti V and Ramanathan S J. Appl. Phys. 107 114516 DOI: 10.1063/1.34088992010 [17] Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G and Triscone J M Adv. Mater. 22 5517 DOI: 10.1002/adma.v22.482010 [18] Zhang K H L, Du Y, Sushko P V, Bowden M E, Shutthanandan V, Sallis S, Piper L F J and Chambers S A Phys. Rev. B 91 155129 DOI: 10.1103/PhysRevB.91.1551292015 [19] Lee J H and Rabe K M Phys. Rev. Lett. 107 067601 DOI: 10.1103/PhysRevLett.107.0676012011 [20] Dagotto E Science 318 1076 DOI: 10.1126/science.11510942007 [21] Mannhart J and Schlom D G Science 327 1607 DOI: 10.1126/science.11818622010 [22] Takagi H and Hwang H Y Science 327 1601 DOI: 10.1126/science.11825412010 [23] Hammerl G and Spaldin N Science 332 922 DOI: 10.1126/science.12062472011 [24] Bhattacharya A, May S J, Velthuis S G E te, Warusawithana M, Zhai X, Jiang B, Zuo J M, Fitzsimmons M R, Bader S D and Eckstein J N Phys. Rev. Lett. 100 257203 DOI: 10.1103/PhysRevLett.100.2572032008 [25] Dong S, Yu R, Yunoki S, Alvarez G, Liu J M and Dagotto E Phys. Rev. B 78 201102 DOI: 10.1103/PhysRevB.78.2011022008 [26] Aruta C, Adamo C, Galdi A, Orgiani P, Bisogni V, Brookes N B, Cezar J C, Thakur P, Perroni C A, Filippis G D, Cataudella V, Schlom D G, Maritato L and Ghiringhelli G Phys. Rev. B 80 140405 DOI: 10.1103/PhysRevB.80.1404052009 [27] Nanda B R K and Satpathy S Phys. Rev. B 79 054428 DOI: 10.1103/PhysRevB.79.0544282009 [28] Ohtomo A and Hwang H Y Nature 427 423 DOI: 10.1038/nature023082004 [29] Niu W, Chen Y D, Gan Y L, Zhang Y, Zhang X Q, Yuan X, Cao Z, Liu W Q, Xu Y B, Zhang R, Pryds N, Chen Y Z, Pu Y and Wang X F Appl. Phys. Lett. 115 061601 DOI: 10.1063/1.51088132019 [30] Cwik M, Lorenz T, Baier J, Muller R, Andre G, Bouree F, Lichtenberg F, Freimuth A, Schmitz R, Muller-Hartmann E and Braden M Phys. Rev. B 68 060401 DOI: 10.1103/PhysRevB.68.0604012003 [31] Chamberland B L and Danielson P S J. Solid State Chem. 3 243 DOI: 10.1016/0022-4596(71)90035-11971 [32] Komarek A C, Roth H, Cwik M, Stein W D, Baier J, Kriener M, Bourèe F, Lorenz T and Braden M Phys. Rev. B 75 224402 DOI: 10.1103/PhysRevB.75.2244022007 [33] Falcon H, Alonso J A, Casais M T, Martinez-Lope M J and Sanchez-Benitez J J. Solid State Chem. 177 3099 DOI: 10.1016/j.jssc.2004.05.0102004 [34] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K Phys. Rev. Lett. 100 136406 DOI: 10.1103/PhysRevLett.100.1364062008 [35] Kresse G and Hafner J Phys. Rev. B 47 558 DOI: 10.1103/PhysRevB.47.5581993 [36] Kresse G and Furthmüller J Phys. Rev. B 54 11169 DOI: 10.1103/PhysRevB.54.111691996 [37] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P Phys. Rev. B 57 1505 DOI: 10.1103/PhysRevB.57.15051998 [38] Zhang H M, Weng Y K, Yao X Y and Dong S Phys. Rev. B 91 195145 DOI: 10.1103/PhysRevB.91.1951452015 [39] Park S Y, Kumar A and Rabe K M Phys. Rev. Lett. 118 087602 DOI: 10.1103/PhysRevLett.118.0876022017 [40] Weng Y K, Zhang J J, Gao B and Dong S Phys. Rev. B 95 155117 DOI: 10.1103/PhysRevB.95.1551172017 [41] Dong S, Zhang Q F, Yunoki S, Liu J M and Dagotto E Phys. Rev. B 86 205121 DOI: 10.1103/PhysRevB.86.2051212012 [42] Rondinelli J M and Spaldin N A Adv. Mater. 23 3363 DOI: 10.1002/adma.2011011522011 [43] Kumar D, David A, Fouchet A, Pautrat A, Varignon J, Jung C U, Lders U, Domengs B, Copie O, Ghosez P and Prellier W Phys. Rev. B 99 224405 DOI: 10.1103/PhysRevB.99.2244052019 [44] Lu H S and Guo G Y Phys. Rev. B 99 104405 DOI: 10.1103/PhysRevB.99.1044052019 [45] Weng Y K, Huang X, Tang Y K and Dong S 2014 J. Appl. Phys. 115 17E108 DOI: 10.1063/1.4860016 [46] An M, Weng Y K, Zhang H M, Zhang J J, Zhang Y and Dong S Phys. Rev. B 96 235112 DOI: 10.1103/PhysRevB.96.2351122017 [47] Wang X R, Li C J, Lü W M, Paudel T R, Leusink D P, Hoek M, Poccia N, Vailionis A, Venkatesan T, Coey J M D, Tsymbal E Y, Ariando and Hilgenkamp H Science 349 716 DOI: 10.1126/science.aaa51982015 [48] He X and Jin K J Phys. Rev. B 93 161108 DOI: 10.1103/PhysRevB.93.1611082016 [49] Varignon J, Bibes M and Zunger A Nat. Commun. 10 1658 DOI: 10.1038/s41467-019-09698-62019 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|