INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Performance optimization of self-powered visible photodetectors based on Cu2O/electrolyte heterojunctions |
Zhi-Ming Bai(白智明)†, Ying-Hua Zhang(张英华)‡, Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤), and Jia Liu(刘佳) |
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract The performance of the self-powered photodetectors based on the Cu2O/electrolyte heterojunctions is optimized by adjusting morphology and structure of the Cu2O film. The Cu2O film with a deposition time of 2000 s possesses a largest current density of 559.6 μ A/cm2 under visible light illumination at zero bias, with a rising time of 5.2 ms and a recovering time of 9.0 ms. This optimized Cu2O film has a highest responsivity of about 25.8 mA/W for visible light, and a negligible responsivity for UV light. The high crystallinity and excellent charge transfer property are responsible for the improved photodetection performance.
|
Received: 14 May 2020
Revised: 02 July 2020
Accepted manuscript online: 01 August 2020
|
PACS:
|
82.47.Jk
|
(Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.20.Ka
|
(Chemical synthesis; combustion synthesis)
|
|
72.40.+w
|
(Photoconduction and photovoltaic effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51602021) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-18-023A2). |
Corresponding Authors:
†Corresponding author. E-mail: baizhiming2008@126.com ‡Corresponding author. E-mail: zhangyinghuaustb@sina.com
|
Cite this article:
Zhi-Ming Bai(白智明), Ying-Hua Zhang(张英华), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤), and Jia Liu(刘佳) Performance optimization of self-powered visible photodetectors based on Cu2O/electrolyte heterojunctions 2020 Chin. Phys. B 29 128202
|
[1] Zhang S and Cicoira F Nature 561 466 DOI: 10.1038/d41586-018-06788-12018 [2] Ferreira G, Goswami S, Nandy S, Pereira L, Martins R and Fortunato E Adv. Funct. Mater. 30 1908994 DOI: 10.1002/adfm.2019089942020 [3] Wang Z L Adv. Mater. 24 280 DOI: 10.1002/adma.2011029582012 [4] Peng W, Wang X, Yu R, Dai Y, Zou H, Wang A C, He Y and Wang Z L Adv. Mater. 29 1606698 DOI: 10.1002/adma.2016066982017 [5] Ren X, Li Z, Huang Z, Sang D, Qiao H, Qi X, Li J, Zhong J and Zhang H Adv. Funct. Mater. 27 1606834 DOI: 10.1002/adfm.2016068342017 [6] Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L and Fang X Adv. Mater. 24 2305 DOI: 10.1002/adma.2012005122012 [7] Wang C, Xu J, Shi S, Zhang Y, Gao Y, Liu Z, Zhang X and Li L J. Phys. Chem. Solids 103 218 DOI: 10.1016/j.jpcs.2016.12.0262017 [8] Hassan J J, Mahdi M A, Kasim S J, Ahmed N M, Abu Hassan H and Hassan Z Appl. Phys. Lett. 101 261108 DOI: 10.1063/1.47732452012 [9] Sarkar S and Basak D ACS Appl. Mater. Inter. 7 16322 DOI: 10.1021/acsami.5b031842015 [10] Yang S, Gong J and Deng Y J. Mater. Chem. 22 13899 DOI: 10.1039/c2jm32287k2012 [11] Hong Q, Cao Y, Xu J, Lu H, He J and Sun J L ACS Appl. Mater. Inter. 6 20887 DOI: 10.1021/am50543382014 [12] Jin W, Ye Y, Gan L, Yu B, Wu P, Dai Y, Meng H, Guo X and Dai L J. Mater. Chem. 22 2863 DOI: 10.1039/c2jm15913a2012 [13] Duan L, He F, Tian Y, Sun B, Fan J, Yu X, Ni L, Zhang Y, Chen Y and Zhang W ACS Appl. Mater. Inter. 9 8161 DOI: 10.1021/acsami.6b143052017 [14] Wu Y, Yan X, Zhang X and Ren X Appl. Phys. Lett. 109 183101 DOI: 10.1063/1.49668992016 [15] Ren X, Li Z, Huang Z, Sang D, Qiao H, Qi X, Li J, Zhong J and Zhang H Adv. Funct. Mater. 27 1606834 DOI: 10.1002/adfm.2016068342017 [16] Xie Y, Wei L, Li Q, Chen Y, Yan S, Jiao J, Liu G and Mei L Nanotechnology 25 075202 DOI: 10.1088/0957-4484/25/7/0752022014 [17] Gao C, Li X, Wang Y, Chen L, Pan X, Zhang Z and Xie E J. Power Sources 239 458 DOI: 10.1016/j.jpowsour.2013.04.0032013 [18] Xie Y R, Wei L, Wei G D, Li Q H, Wang D, Chen Y X, Yan S S, Liu G L, Mei L M and Jiao J Nanoscale Res. Lett. 8 188 DOI: 10.1186/1556-276X-8-1882013 [19] Lee W J and Hon M H Appl. Phys. Lett. 99 251102 DOI: 10.1063/1.36710762011 [20] Lin P, Yan X, Liu Y, Li P, Lu S and Zhang Y Phys. Chem. Chem. Phys. 16 26697 DOI: 10.1039/C4CP04411H2014 [21] Chen L, Li X, Wang Y, Gao C, Zhang H, Zhao B, Teng F, Zhou J, Zhang Z, Pan X and Xie E J. Power Sources 272 886 DOI: 10.1016/j.jpowsour.2014.09.0212014 [22] Xie Y, Wei L, Li Q, Chen Y, Liu H, Yan S, Jiao J, Liu G and Mei L Nanoscale 6 9116 DOI: 10.1039/C4NR01665C2014 [23] Li X, Gao C, Duan H, Lu B, Wang Y, Chen L, Zhang Z, Pan X and Xie E Small 9 2005 DOI: 10.1002/smll.v9.112013 [24] Gao C, Li X, Zhu X, Chen L, Wang Y, Teng F, Zhang Z, Duan H and Xie E J. Alloys Compd. 616 510 DOI: 10.1016/j.jallcom.2014.07.1712014 [25] Susman M D, Feldman Y, Vaskevich A and Rubinstein I ACS Nano 8 162 DOI: 10.1021/nn405891g2014 [26] Chen X, Lin P, Yan X, Bai Z, Yuan H, Shen Y, Liu Y, Zhang G, Zhang Z and Zhang Y ACS Appl. Mater. Inter. 7 3216 DOI: 10.1021/am507836v2015 [27] Paracchino A, Laporte V, Sivula K, Gratzel M and Thimsen E Nat. Mater. 10 456 DOI: 10.1038/nmat30172011 [28] Hossain M A, Al-Gaashani R, Hamoudi H, Al Marri M J, Hussein I A, Belaidi A, Merzougui B A, Alharbi F H and Tabet N Mater. Sci. Semicon. Proc. 63 203 DOI: 10.1016/j.mssp.2017.02.0122017 [29] Bai Z and Zhang Y J. Alloys Compd. 675 325 DOI: 10.1016/j.jallcom.2016.03.0512016 [30] Bai Z, Liu J, Liu F and Zhang Y J. Alloys Compd. 726 803 DOI: 10.1016/j.jallcom.2017.08.0352017 [31] Herbadji A, Bouderbala I Y, Mentar L and Azizi A Russ. J. Electrochem. 55 1336 DOI: 10.1134/S10231935191200732019 [32] Laidoudi S, Bioud A Y, Azizi A, Schmerber G, Bartringer J, Barre S and Dinia A Semicond. Sci. Technol. 28 115005 DOI: 10.1088/0268-1242/28/11/1150052013 [33] Bai Z and Zhang Y J. Alloys Compd. 698 133 DOI: 10.1016/j.jallcom.2016.12.2612017 [34] Paracchino A, Brauer J C, Moser J E, Thimsen E and Graetzel M J. Phys. Chem. C 116 7341 DOI: 10.1021/jp301176y2012 [35] Zou X, Fan H, Tian Y and Yan S CrystEngComm 16 1149 DOI: 10.1039/C3CE42144A2014 [36] Matthew S and Kyoung-shin J C Adv. Mater. 16 1743 DOI: 10.1002/(ISSN)1521-40952004 [37] Zhai Y C, Fan H Q, Li Q and Yan W Appl. Surf. Sci. 258 3232 DOI: 10.1016/j.apsusc.2011.11.0702012 [38] Brandt I S, Martins C A, ZoldanV C, Viegas A D C, Silva J H and Pasa A A Thin Solid Films 562 144 DOI: 10.1016/j.tsf.2014.04.0132014 [39] Brandt I S, Tumelero M A, Pelegrini S, Zangari G and Pasa A A J. Solid State Electrochem. 21 1999 DOI: 10.1007/s10008-017-3660-x2017 [40] Zhong Z, Li M, Fu J H, Wang Y X, Muhammad Y, Li S H, Wang J H, Zhao Z X and Zhao Z X Chem. Eng. J. 395 125184 DOI: 10.1016/j.cej.2020.1251842020 [41] Ghamgosar P, Rigoni F, You S, Dobryden I, Kohan M G, Pellegrino A L, Concina I, Almqvist N, Malandrino G and Vomiero A Nano Energy 51 308 DOI: 10.1016/j.nanoen.2018.06.0582018 [42] Lin P, Chen X, Yan X, Zhang Z, Yuan H, Li P, Zhao Y and Zhang Y Nano Research 7 860 DOI: 10.1007/s12274-014-0447-62014 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|