Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128202    DOI: 10.1088/1674-1056/abab7b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance optimization of self-powered visible photodetectors based on Cu2O/electrolyte heterojunctions

Zhi-Ming Bai(白智明)†, Ying-Hua Zhang(张英华)‡, Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤), and Jia Liu(刘佳)
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The performance of the self-powered photodetectors based on the Cu2O/electrolyte heterojunctions is optimized by adjusting morphology and structure of the Cu2O film. The Cu2O film with a deposition time of 2000 s possesses a largest current density of 559.6 μ A/cm2 under visible light illumination at zero bias, with a rising time of 5.2 ms and a recovering time of 9.0 ms. This optimized Cu2O film has a highest responsivity of about 25.8 mA/W for visible light, and a negligible responsivity for UV light. The high crystallinity and excellent charge transfer property are responsible for the improved photodetection performance.
Keywords:  self-powered      visible      photodetector      Cu2O      photoelectrochemical  
Received:  14 May 2020      Revised:  02 July 2020      Accepted manuscript online:  01 August 2020
PACS:  82.47.Jk (Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.20.Ka (Chemical synthesis; combustion synthesis)  
  72.40.+w (Photoconduction and photovoltaic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51602021) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-18-023A2).
Corresponding Authors:  Corresponding author. E-mail: baizhiming2008@126.com Corresponding author. E-mail: zhangyinghuaustb@sina.com   

Cite this article: 

Zhi-Ming Bai(白智明), Ying-Hua Zhang(张英华), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤), and Jia Liu(刘佳) Performance optimization of self-powered visible photodetectors based on Cu2O/electrolyte heterojunctions 2020 Chin. Phys. B 29 128202

[1] Zhang S and Cicoira F Nature 561 466 DOI: 10.1038/d41586-018-06788-12018
[2] Ferreira G, Goswami S, Nandy S, Pereira L, Martins R and Fortunato E Adv. Funct. Mater. 30 1908994 DOI: 10.1002/adfm.2019089942020
[3] Wang Z L Adv. Mater. 24 280 DOI: 10.1002/adma.2011029582012
[4] Peng W, Wang X, Yu R, Dai Y, Zou H, Wang A C, He Y and Wang Z L Adv. Mater. 29 1606698 DOI: 10.1002/adma.2016066982017
[5] Ren X, Li Z, Huang Z, Sang D, Qiao H, Qi X, Li J, Zhong J and Zhang H Adv. Funct. Mater. 27 1606834 DOI: 10.1002/adfm.2016068342017
[6] Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L and Fang X Adv. Mater. 24 2305 DOI: 10.1002/adma.2012005122012
[7] Wang C, Xu J, Shi S, Zhang Y, Gao Y, Liu Z, Zhang X and Li L J. Phys. Chem. Solids 103 218 DOI: 10.1016/j.jpcs.2016.12.0262017
[8] Hassan J J, Mahdi M A, Kasim S J, Ahmed N M, Abu Hassan H and Hassan Z Appl. Phys. Lett. 101 261108 DOI: 10.1063/1.47732452012
[9] Sarkar S and Basak D ACS Appl. Mater. Inter. 7 16322 DOI: 10.1021/acsami.5b031842015
[10] Yang S, Gong J and Deng Y J. Mater. Chem. 22 13899 DOI: 10.1039/c2jm32287k2012
[11] Hong Q, Cao Y, Xu J, Lu H, He J and Sun J L ACS Appl. Mater. Inter. 6 20887 DOI: 10.1021/am50543382014
[12] Jin W, Ye Y, Gan L, Yu B, Wu P, Dai Y, Meng H, Guo X and Dai L J. Mater. Chem. 22 2863 DOI: 10.1039/c2jm15913a2012
[13] Duan L, He F, Tian Y, Sun B, Fan J, Yu X, Ni L, Zhang Y, Chen Y and Zhang W ACS Appl. Mater. Inter. 9 8161 DOI: 10.1021/acsami.6b143052017
[14] Wu Y, Yan X, Zhang X and Ren X Appl. Phys. Lett. 109 183101 DOI: 10.1063/1.49668992016
[15] Ren X, Li Z, Huang Z, Sang D, Qiao H, Qi X, Li J, Zhong J and Zhang H Adv. Funct. Mater. 27 1606834 DOI: 10.1002/adfm.2016068342017
[16] Xie Y, Wei L, Li Q, Chen Y, Yan S, Jiao J, Liu G and Mei L Nanotechnology 25 075202 DOI: 10.1088/0957-4484/25/7/0752022014
[17] Gao C, Li X, Wang Y, Chen L, Pan X, Zhang Z and Xie E J. Power Sources 239 458 DOI: 10.1016/j.jpowsour.2013.04.0032013
[18] Xie Y R, Wei L, Wei G D, Li Q H, Wang D, Chen Y X, Yan S S, Liu G L, Mei L M and Jiao J Nanoscale Res. Lett. 8 188 DOI: 10.1186/1556-276X-8-1882013
[19] Lee W J and Hon M H Appl. Phys. Lett. 99 251102 DOI: 10.1063/1.36710762011
[20] Lin P, Yan X, Liu Y, Li P, Lu S and Zhang Y Phys. Chem. Chem. Phys. 16 26697 DOI: 10.1039/C4CP04411H2014
[21] Chen L, Li X, Wang Y, Gao C, Zhang H, Zhao B, Teng F, Zhou J, Zhang Z, Pan X and Xie E J. Power Sources 272 886 DOI: 10.1016/j.jpowsour.2014.09.0212014
[22] Xie Y, Wei L, Li Q, Chen Y, Liu H, Yan S, Jiao J, Liu G and Mei L Nanoscale 6 9116 DOI: 10.1039/C4NR01665C2014
[23] Li X, Gao C, Duan H, Lu B, Wang Y, Chen L, Zhang Z, Pan X and Xie E Small 9 2005 DOI: 10.1002/smll.v9.112013
[24] Gao C, Li X, Zhu X, Chen L, Wang Y, Teng F, Zhang Z, Duan H and Xie E J. Alloys Compd. 616 510 DOI: 10.1016/j.jallcom.2014.07.1712014
[25] Susman M D, Feldman Y, Vaskevich A and Rubinstein I ACS Nano 8 162 DOI: 10.1021/nn405891g2014
[26] Chen X, Lin P, Yan X, Bai Z, Yuan H, Shen Y, Liu Y, Zhang G, Zhang Z and Zhang Y ACS Appl. Mater. Inter. 7 3216 DOI: 10.1021/am507836v2015
[27] Paracchino A, Laporte V, Sivula K, Gratzel M and Thimsen E Nat. Mater. 10 456 DOI: 10.1038/nmat30172011
[28] Hossain M A, Al-Gaashani R, Hamoudi H, Al Marri M J, Hussein I A, Belaidi A, Merzougui B A, Alharbi F H and Tabet N Mater. Sci. Semicon. Proc. 63 203 DOI: 10.1016/j.mssp.2017.02.0122017
[29] Bai Z and Zhang Y J. Alloys Compd. 675 325 DOI: 10.1016/j.jallcom.2016.03.0512016
[30] Bai Z, Liu J, Liu F and Zhang Y J. Alloys Compd. 726 803 DOI: 10.1016/j.jallcom.2017.08.0352017
[31] Herbadji A, Bouderbala I Y, Mentar L and Azizi A Russ. J. Electrochem. 55 1336 DOI: 10.1134/S10231935191200732019
[32] Laidoudi S, Bioud A Y, Azizi A, Schmerber G, Bartringer J, Barre S and Dinia A Semicond. Sci. Technol. 28 115005 DOI: 10.1088/0268-1242/28/11/1150052013
[33] Bai Z and Zhang Y J. Alloys Compd. 698 133 DOI: 10.1016/j.jallcom.2016.12.2612017
[34] Paracchino A, Brauer J C, Moser J E, Thimsen E and Graetzel M J. Phys. Chem. C 116 7341 DOI: 10.1021/jp301176y2012
[35] Zou X, Fan H, Tian Y and Yan S CrystEngComm 16 1149 DOI: 10.1039/C3CE42144A2014
[36] Matthew S and Kyoung-shin J C Adv. Mater. 16 1743 DOI: 10.1002/(ISSN)1521-40952004
[37] Zhai Y C, Fan H Q, Li Q and Yan W Appl. Surf. Sci. 258 3232 DOI: 10.1016/j.apsusc.2011.11.0702012
[38] Brandt I S, Martins C A, ZoldanV C, Viegas A D C, Silva J H and Pasa A A Thin Solid Films 562 144 DOI: 10.1016/j.tsf.2014.04.0132014
[39] Brandt I S, Tumelero M A, Pelegrini S, Zangari G and Pasa A A J. Solid State Electrochem. 21 1999 DOI: 10.1007/s10008-017-3660-x2017
[40] Zhong Z, Li M, Fu J H, Wang Y X, Muhammad Y, Li S H, Wang J H, Zhao Z X and Zhao Z X Chem. Eng. J. 395 125184 DOI: 10.1016/j.cej.2020.1251842020
[41] Ghamgosar P, Rigoni F, You S, Dobryden I, Kohan M G, Pellegrino A L, Concina I, Almqvist N, Malandrino G and Vomiero A Nano Energy 51 308 DOI: 10.1016/j.nanoen.2018.06.0582018
[42] Lin P, Chen X, Yan X, Zhang Z, Yuan H, Li P, Zhao Y and Zhang Y Nano Research 7 860 DOI: 10.1007/s12274-014-0447-62014
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[4] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[5] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[6] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[7] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[8] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[9] Fast-speed self-powered PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector with solar-blind UV/visible dual-band photodetection
Ming-Ming Fan(范明明), Kang-Li Xu(许康丽), Ling Cao(曹铃), and Xiu-Yan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 048501.
[10] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[11] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[12] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[13] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[14] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[15] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
No Suggested Reading articles found!