|
|
Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn |
Guangqiang Wang(王光强)1, Zhanghao Sun(孙彰昊)1, Xinyu Si(司鑫宇)1, Shuang Jia(贾爽)1,2,3,4 |
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; 2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; 3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Beijing Academy of Quantum Information Sciences, Beijing 100193, China |
|
|
Abstract We grew single crystals of vanadium-substituted, ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn from molten tin flux. These solid solutions all crystallize in a full Heusler structure (L21) while their Curie temperatures and magnetic moments are enhanced by V-substitution. Their resistivity gradually changes from bad-metal-like to semiconductor-like with increasing x while the anomalous Hall effect (AHE), which can be well fitted by Tian-Ye-Jin (TYJ) scaling,[1] is also enhanced. Moreover, we find an apparent electron-electron interaction (EEI) induced quantum correction in resistivity at low temperature. The anomalous Hall conductivity (AHC) dominated by the intrinsic term is not corrected.
|
Received: 12 March 2020
Revised: 20 April 2020
Accepted manuscript online:
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
72.80.Ga
|
(Transition-metal compounds)
|
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774007 and U1832214), the National Key R&D Program of China (Grant No. 2018YFA0305601), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000). |
Corresponding Authors:
Shuang Jia
E-mail: gwljiashuang@pku.edu.cn
|
Cite this article:
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽) Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn 2020 Chin. Phys. B 29 077503
|
[1] |
Tian Y, Ye L and Jin X 2009 Phys. Rev. Lett. 103 087206
|
[2] |
Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
|
[3] |
Zou J, He Z and Xu G 2019 npj Comput. Mater. 5 96
|
[4] |
Burkov A A 2014 Phys. Rev. Lett. 113 187202
|
[5] |
Belopolski I, Manna K, Sanchez D S, et al. 2019 Science 365 1278
|
[6] |
Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
|
[7] |
Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286
|
[8] |
Liu E, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125
|
[9] |
Wollmann L, Nayak A K, Parkin S S P and Felser C 2017 Ann. Rev. Mater. Res. 47 247
|
[10] |
Manna K, Sun Y, Muechler L, Kübler J and Felser C 2018 Nat. Rev. Mater. 3 244
|
[11] |
Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W and Checkelsky J G 2016 Nat. Phys. 12 1119
|
[12] |
Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429
|
[13] |
Kübler J, Fecher G H and Felser C 2007 Phys. Rev. B 76 024414
|
[14] |
Fechera G H, Kandpal H C, Wurmehl S and Felser C 2006 J. Appl. Phys. 99 08J106
|
[15] |
Manna K, Muechler L, Kao T H, Stinshoff R, Zhang Y, Gooth J, Kumar N, Kreiner G, Koepernik K, Car R, Kübler J, Fecher G H, Shekhar C, Sun Y and Felser C 2018 Phys. Rev. X 8 041045
|
[16] |
Wang Z, Vergniory M G, Kushwaha S, Hirschberger M, Chulkov E V, Ernst A, Ong N P, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 236401
|
[17] |
Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, Alidoust N, Belopolski I, Sanchez D S, Zhang S, Lin H and Hasan M Z 2016 Sci. Rep. 6 38839
|
[18] |
Kübler J and Felser C 2012 Phys. Rev. B 85 012405
|
[19] |
Wolter A U B, Bosse A, Baabe D, Maksimov I, Mienert D, Klauß H H, Litterst F J, Niemeier D, Michalak R, Geibel C, Feyerherm R, Hendrikx R, Mydosh J A and Süllow S 2002 Phys. Rev. B 66 174428
|
[20] |
Zhang W, Qian Z, Sui Y, Liu Y, Su W, Zhang M, Liu Z, Liu G and Wu G 2006 J. Magn. Magn. Mater. 299 255
|
[21] |
Carbonari A W, Saxena R N, Pendl J W, Filho J M, Attili R N, Dionysio M O and de Souza S D 1996 J. Magn. Magn. Mater. 163 313
|
[22] |
Yu T, Yu X, Yang E, Sun C, Zhang X and Lei M 2019 Chin. Phys. B 28 067501
|
[23] |
Kushwaha S K, Stolze K, Wang Z, Hirschberger M, Lin J, Bernevig B A, Ong N P and Cava R J 2017 J. Phys.: Condens. Matter 29 225702
|
[24] |
Kushwaha S K, Wang Z, Kong T and Cava R J 2018 J. Phys.: Condens. Matter 30 075701
|
[25] |
Yang M, Gu G, Yi C, Yan D, Li Y and Shi Y 2019 J. Phys.: Condens. Matter 31 275702
|
[26] |
Ernst B, Sahoo R, Sun Y, Nayak J, Müchler L, Nayak A K, Kumar N, Gayles J, Markou A, Fecher G H and Felser C 2019 Phys. Rev. B 100 054445
|
[27] |
Hu J, Ernst B, Tu S, Kuveždić M, HamzićA, Tafra E, Basletić M, Zhang Y, Markou A, Felser C, Fert A, Zhao W, Ansermet J P and Yu H 2018 Phys. Rev. Applied 10 044037
|
[28] |
Lee W L, Watauchi S, Miller V L, Cava R J and Ong N P 2004 Science 303 1647
|
[29] |
Hazra B K, Kaul S N, Srinath S, Raja M M, Rawat R and Lakhani A 2017 Phys. Rev. B 96 184434
|
[30] |
Zhu L J, Nie S H and Zhao J H 2016 Phys. Rev. B 93 195112
|
[31] |
Ding J J, Wu S B, Yang X F and Zhu T 2015 Chin. Phys. B 24 027201
|
[32] |
Zhu T 2014 Chin. Phys. B 23 047504
|
[33] |
Hou D, Su G, Tian Y, Jin X, Yang S A and Niu Q 2015 Phys. Rev. Lett. 114 217203
|
[34] |
Yue D and Jin X 2017 J. Phys. Soc. Jpn. 86 011006
|
[35] |
Ślebarski A, Jezierski A, Neumann M and Plogmann S 1999 Eur. Phys. J. B 12 519
|
[36] |
Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
|
[37] |
Dunlap R A and Stroink G 1982 J. Appl. Phys. 53 8210
|
[38] |
Pendl J W, Saxena R N, Carbonari A W, Filho J M and Schaff J 1996 J. Phys.: Condens. Matter 8 11317
|
[39] |
Yang S, Li Z, Lin C, Yi C, Shi Y, Culcer D and Li Y 2019 Phys. Rev. Lett. 123 096601
|
[40] |
Mitra P, Misra R, Hebard A F, Muttalib K A and Wölfle P 2007 Phys. Rev. Lett. 99 046804
|
[41] |
Shi G, Zhang M, Yan D, Feng H, Yang M, Shi Y and Li Y 2020 Chin. Phys. Lett. 4 047301
|
[42] |
Wang Q, Yu P, Huang X, Fan J, Jing X, Ji Z, Liu Z, Liu G, Yang C and Lu L 2018 Chin. Phys. Lett. 35 077303
|
[43] |
Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
|
[44] |
Dugaev V K, Crépieux A and Bruno P 2001 Phys. Rev. B 64 104411
|
[45] |
Langenfeld A and Wölfle P 1991 Phys. Rev. Lett. 67 739
|
[46] |
Muttalib K A and Wölfle P 2007 Phys. Rev. B 76 214415
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|