Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077503    DOI: 10.1088/1674-1056/ab8da8
RAPID COMMUNICATION Prev   Next  

Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn

Guangqiang Wang(王光强)1, Zhanghao Sun(孙彰昊)1, Xinyu Si(司鑫宇)1, Shuang Jia(贾爽)1,2,3,4
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  We grew single crystals of vanadium-substituted, ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn from molten tin flux. These solid solutions all crystallize in a full Heusler structure (L21) while their Curie temperatures and magnetic moments are enhanced by V-substitution. Their resistivity gradually changes from bad-metal-like to semiconductor-like with increasing x while the anomalous Hall effect (AHE), which can be well fitted by Tian-Ye-Jin (TYJ) scaling,[1] is also enhanced. Moreover, we find an apparent electron-electron interaction (EEI) induced quantum correction in resistivity at low temperature. The anomalous Hall conductivity (AHC) dominated by the intrinsic term is not corrected.
Keywords:  anomalous Hall effect      ferromagnetic Weyl semimetal      full Heusler      electron-electron interaction  
Received:  12 March 2020      Revised:  20 April 2020      Accepted manuscript online: 
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  72.80.Ga (Transition-metal compounds)  
  71.55.Ak (Metals, semimetals, and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774007 and U1832214), the National Key R&D Program of China (Grant No. 2018YFA0305601), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000).
Corresponding Authors:  Shuang Jia     E-mail:  gwljiashuang@pku.edu.cn

Cite this article: 

Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽) Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn 2020 Chin. Phys. B 29 077503

[1] Tian Y, Ye L and Jin X 2009 Phys. Rev. Lett. 103 087206
[2] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[3] Zou J, He Z and Xu G 2019 npj Comput. Mater. 5 96
[4] Burkov A A 2014 Phys. Rev. Lett. 113 187202
[5] Belopolski I, Manna K, Sanchez D S, et al. 2019 Science 365 1278
[6] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
[7] Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286
[8] Liu E, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125
[9] Wollmann L, Nayak A K, Parkin S S P and Felser C 2017 Ann. Rev. Mater. Res. 47 247
[10] Manna K, Sun Y, Muechler L, Kübler J and Felser C 2018 Nat. Rev. Mater. 3 244
[11] Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W and Checkelsky J G 2016 Nat. Phys. 12 1119
[12] Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429
[13] Kübler J, Fecher G H and Felser C 2007 Phys. Rev. B 76 024414
[14] Fechera G H, Kandpal H C, Wurmehl S and Felser C 2006 J. Appl. Phys. 99 08J106
[15] Manna K, Muechler L, Kao T H, Stinshoff R, Zhang Y, Gooth J, Kumar N, Kreiner G, Koepernik K, Car R, Kübler J, Fecher G H, Shekhar C, Sun Y and Felser C 2018 Phys. Rev. X 8 041045
[16] Wang Z, Vergniory M G, Kushwaha S, Hirschberger M, Chulkov E V, Ernst A, Ong N P, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 236401
[17] Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, Alidoust N, Belopolski I, Sanchez D S, Zhang S, Lin H and Hasan M Z 2016 Sci. Rep. 6 38839
[18] Kübler J and Felser C 2012 Phys. Rev. B 85 012405
[19] Wolter A U B, Bosse A, Baabe D, Maksimov I, Mienert D, Klauß H H, Litterst F J, Niemeier D, Michalak R, Geibel C, Feyerherm R, Hendrikx R, Mydosh J A and Süllow S 2002 Phys. Rev. B 66 174428
[20] Zhang W, Qian Z, Sui Y, Liu Y, Su W, Zhang M, Liu Z, Liu G and Wu G 2006 J. Magn. Magn. Mater. 299 255
[21] Carbonari A W, Saxena R N, Pendl J W, Filho J M, Attili R N, Dionysio M O and de Souza S D 1996 J. Magn. Magn. Mater. 163 313
[22] Yu T, Yu X, Yang E, Sun C, Zhang X and Lei M 2019 Chin. Phys. B 28 067501
[23] Kushwaha S K, Stolze K, Wang Z, Hirschberger M, Lin J, Bernevig B A, Ong N P and Cava R J 2017 J. Phys.: Condens. Matter 29 225702
[24] Kushwaha S K, Wang Z, Kong T and Cava R J 2018 J. Phys.: Condens. Matter 30 075701
[25] Yang M, Gu G, Yi C, Yan D, Li Y and Shi Y 2019 J. Phys.: Condens. Matter 31 275702
[26] Ernst B, Sahoo R, Sun Y, Nayak J, Müchler L, Nayak A K, Kumar N, Gayles J, Markou A, Fecher G H and Felser C 2019 Phys. Rev. B 100 054445
[27] Hu J, Ernst B, Tu S, Kuveždić M, HamzićA, Tafra E, Basletić M, Zhang Y, Markou A, Felser C, Fert A, Zhao W, Ansermet J P and Yu H 2018 Phys. Rev. Applied 10 044037
[28] Lee W L, Watauchi S, Miller V L, Cava R J and Ong N P 2004 Science 303 1647
[29] Hazra B K, Kaul S N, Srinath S, Raja M M, Rawat R and Lakhani A 2017 Phys. Rev. B 96 184434
[30] Zhu L J, Nie S H and Zhao J H 2016 Phys. Rev. B 93 195112
[31] Ding J J, Wu S B, Yang X F and Zhu T 2015 Chin. Phys. B 24 027201
[32] Zhu T 2014 Chin. Phys. B 23 047504
[33] Hou D, Su G, Tian Y, Jin X, Yang S A and Niu Q 2015 Phys. Rev. Lett. 114 217203
[34] Yue D and Jin X 2017 J. Phys. Soc. Jpn. 86 011006
[35] Ślebarski A, Jezierski A, Neumann M and Plogmann S 1999 Eur. Phys. J. B 12 519
[36] Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
[37] Dunlap R A and Stroink G 1982 J. Appl. Phys. 53 8210
[38] Pendl J W, Saxena R N, Carbonari A W, Filho J M and Schaff J 1996 J. Phys.: Condens. Matter 8 11317
[39] Yang S, Li Z, Lin C, Yi C, Shi Y, Culcer D and Li Y 2019 Phys. Rev. Lett. 123 096601
[40] Mitra P, Misra R, Hebard A F, Muttalib K A and Wölfle P 2007 Phys. Rev. Lett. 99 046804
[41] Shi G, Zhang M, Yan D, Feng H, Yang M, Shi Y and Li Y 2020 Chin. Phys. Lett. 4 047301
[42] Wang Q, Yu P, Huang X, Fan J, Jing X, Ji Z, Liu Z, Liu G, Yang C and Lu L 2018 Chin. Phys. Lett. 35 077303
[43] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[44] Dugaev V K, Crépieux A and Bruno P 2001 Phys. Rev. B 64 104411
[45] Langenfeld A and Wölfle P 1991 Phys. Rev. Lett. 67 739
[46] Muttalib K A and Wölfle P 2007 Phys. Rev. B 76 214415
[1] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[2] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[3] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[4] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[5] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[6] Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(1): 017405.
[7] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[8] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[9] Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE
Shan Li(黎姗), Jun Lu(鲁军)†, Si-Wei Mao(毛思玮), Da-Hai Wei(魏大海), and Jian-Hua Zhao(赵建华). Chin. Phys. B, 2020, 29(10): 107501.
[10] AlOx/LiF composite protection layer for Cr-doped (Bi, Sb)2Te3 quantum anomalous Hall films
Yunbo Ou(欧云波), Yang Feng(冯洋), Xiao Feng(冯硝), Zhenqi Hao(郝镇齐), Liguo Zhang(张立果), Chang Liu(刘畅), Yayu Wang(王亚愚), Ke He(何珂), Xucun Ma(马旭村), Qikun Xue(薛其坤). Chin. Phys. B, 2016, 25(8): 087307.
[11] Quantum anomalous Hall effect in real materials
Jiayong Zhang(张加永), Bao Zhao(赵宝), Tong Zhou(周通), Zhongqin Yang(杨中芹). Chin. Phys. B, 2016, 25(11): 117308.
[12] Localization correction to the anomalous Hall effect in amorphous CoFeB thin films
Ding Jin-Jun (丁进军), Wu Shao-Bing (吴少兵), Yang Xiao-Fei (杨晓非), Zhu Tao (朱涛). Chin. Phys. B, 2015, 24(2): 027201.
[13] Tb doping induced enhancement of anomalous Hall effect in NiFe films
Zhu Jia-Peng (朱嘉鹏), Ma Li (马丽), Zhou Shi-Ming (周仕明), Miao Jun (苗君), Jiang Yong (姜勇). Chin. Phys. B, 2015, 24(1): 017101.
[14] Anomalous Hall effect in perpendicular CoFeB thin films
Zhu Tao (朱涛). Chin. Phys. B, 2014, 23(4): 047504.
[15] Thickness dependence of the anomalous Hall effect in disordered face-centered cubic FePt alloy films
Chen Ming (陈明), He Pan (何攀), Zhou Shi-Ming (周仕明), Shi Zhong (时钟). Chin. Phys. B, 2014, 23(1): 017104.
No Suggested Reading articles found!