SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University |
Prev
Next
|
|
|
Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers |
Yong Li(李勇)1, Xiangjun Jin(金香君)1, Pengfei Pan(潘鹏飞)1, Fu Nan Tan2, Wen Siang Lew2, Fusheng Ma(马付胜)1 |
1 Center for Quantum Transport and Thermal Energy Science, Magnetoelectronic Laboratory, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore |
|
|
Abstract In this work, we experimentally investigated the thermal stability of the interlayer exchange coupling field (Hex) and strength (-Jiec) in synthetic antiferromagnetic (SAF) structure of[Pt(0.6)/Co(0.6)]2/Ru(tRu)/[Co(0.6)/Pt(0.6)]4 multilayers with perpendicular anisotropy. Depending on the thickness of the spacing ruthenium (Ru) layer, the observed interlayer exchange coupling can be either ferromagnetic or antiferromagnetic. The Hex were studied by measuring the magnetization hysteresis loops in the temperature range from 100 K to 700 K as well as the theoretical calculation of the -Jiec. It is found that the interlayer coupling in the multilayers is very sensitive to the thickness of Ru and temperature. The Hex exhibits either a linear or a non-linear dependence on the temperature for different thickness of Ru. Furthermore, our SAF multilayers show a high thermal stability even up to 600 K (Hex=3.19 kOe, -Jiec=1.97 erg/cm2 for tRu=0.6 nm, the unit 1 Oe=79.5775 A·m-1), which was higher than the previous studies.
|
Received: 30 August 2018
Revised: 04 November 2018
Accepted manuscript online:
|
PACS:
|
75.50.Ee
|
(Antiferromagnetics)
|
|
75.50.Ss
|
(Magnetic recording materials)
|
|
75.60.-d
|
(Domain effects, magnetization curves, and hysteresis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11704191), the Jiangsu Specially-Appointed Professor, the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20171026), and the Six-Talent Peaks Project in Jiangsu Province, China (Grant No. XYDXX-038). |
Corresponding Authors:
Fusheng Ma
E-mail: phymafs@njnu.edu.cn
|
Cite this article:
Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜) Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers 2018 Chin. Phys. B 27 127502
|
[1] |
Chun K C, Zhao H, Harms J D, Kim T H, Wang J P and Kim C H 2013 IEEE J. Solid-State Circuits 48 598
|
[2] |
Wolf S A, Awschalom D D, Buhramn R A, Daughton J M, Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[3] |
Zeng Z M, Zhang L, Fang B and Cai J 2018 Appl. Phys. Lett. 112 242408
|
[4] |
Gallagher W J and Parkin S S P 2006 IBM J. Res. Dev. 50 5
|
[5] |
Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813
|
[6] |
Jian-Gang Z H U 2008 Proc. IEEE 96 1786
|
[7] |
Yan S K, Bao J, Su X P, Xu X G and Jiang Y 2008 Acta Phys. Sin. 57 2504 (in Chinese)
|
[8] |
Jia X T and Xia K 2011 Acta Phys. Sin. 60 127202 (in Chinese)
|
[9] |
Wang Y, Cai H, Naviner L A B, Zhang Y, Klein J O and Zhao W S 2015 Microelectron. Reliab. 55 1649
|
[10] |
Liu P, Wang W H, Wang W C, Cheng Y H, Lu F and Liu H 2017 Chin. Phys. Lett. 34 027101
|
[11] |
Liu W, Liu X H, Cui W B, Gong W J and Zhang Z D 2013 Chin. Phys. B 22 027104
|
[12] |
Parkin S S P 1991 Phys. Rev. Lett. 67 3598
|
[13] |
Bruno P and Chappert C 1991 Phys. Rev. Lett. 67 1602
|
[14] |
Bruno P 1995 Phys. Rev. B 52 411
|
[15] |
Xiao Y, Chen S, Zhang Z, Ma B and Jin Q Y 2013 J. Appl. Phys. 113 17A325
|
[16] |
She S X, Wei D, Zheng Y, Qu B J, Ren T L, Liu X and Wei F L 2009 Chin. Phys. Lett. 26 127503
|
[17] |
Bi C, Almasi H, Price K, Newhouse-Illige T, Xu M, Allen S R, Fan X and Wang W 2017 Phys. Rev. B 95 104434
|
[18] |
Zhang P X, Liao L Y, Shi G Y, Zhang R Q, Wu H Q, Wang Y Y, Pan F and Song C 2018 Phys. Rev. B 97 214403
|
[19] |
Kravets A F, Timoshevskii A N, Yanchitsky B Z, Bergmann M A, Buhler J, Andersson S and Korenivski V 2012 Phys. Rev. B 86 214413
|
[20] |
Bloemen P J H, Kesteren H W, Swagten H J M and De M 1994 Phys. Rev. B 50 13505
|
[21] |
Oh S H, Lee J H, Shin R H, Shin Y, Meny C and Jo W 2015 Appl. Phys. Lett. 106 142902
|
[22] |
Parkin S S P, More N and Roche K P 1990 Phys. Rev. Lett. 64 2304
|
[23] |
Folkerts W 1991 J. Magn. Magn. Mater. 94 302
|
[24] |
Lin M S and Lai C H 2007 J. Appl. Phys. 101 09D121
|
[25] |
Liu Z Y and Adenwalla S 2003 Phys. Rev. Lett. 91 37207
|
[26] |
Alayo W and Baggio-Saitovitch E 2010 J. Appl. Phys. 107 073909
|
[27] |
Persat N and Dinia A 1997 Phys. Rev. B 56 2676
|
[28] |
Bandiera S, Sousa R C, Rodmacq B and Dieny B 2012 Appl. Phys. Lett. 100 142410
|
[29] |
Yakushiji K, Kubota H, Fukushima A and Yuasa S 2015 Appl. Phys. Express 8 083003
|
[30] |
Chatterjee J, Tahmasebi T, Swerts J, Kar G S and De Boeck J 2015 Appl. Phys. Express 8 63002
|
[31] |
Lee J B, An G G, Yang S M, Park H S, Chung W S and Hong J P 2016 Sci. Rep. 6 21324
|
[32] |
Inomata A, Abarra E N, Acharya B R, Akimoto H and Okamoto I 2001 IEEE Trans. Magn. 37 1449
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|