Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127502    DOI: 10.1088/1674-1056/27/12/127502
SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University Prev   Next  

Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers

Yong Li(李勇)1, Xiangjun Jin(金香君)1, Pengfei Pan(潘鹏飞)1, Fu Nan Tan2, Wen Siang Lew2, Fusheng Ma(马付胜)1
1 Center for Quantum Transport and Thermal Energy Science, Magnetoelectronic Laboratory, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
Abstract  

In this work, we experimentally investigated the thermal stability of the interlayer exchange coupling field (Hex) and strength (-Jiec) in synthetic antiferromagnetic (SAF) structure of[Pt(0.6)/Co(0.6)]2/Ru(tRu)/[Co(0.6)/Pt(0.6)]4 multilayers with perpendicular anisotropy. Depending on the thickness of the spacing ruthenium (Ru) layer, the observed interlayer exchange coupling can be either ferromagnetic or antiferromagnetic. The Hex were studied by measuring the magnetization hysteresis loops in the temperature range from 100 K to 700 K as well as the theoretical calculation of the -Jiec. It is found that the interlayer coupling in the multilayers is very sensitive to the thickness of Ru and temperature. The Hex exhibits either a linear or a non-linear dependence on the temperature for different thickness of Ru. Furthermore, our SAF multilayers show a high thermal stability even up to 600 K (Hex=3.19 kOe, -Jiec=1.97 erg/cm2 for tRu=0.6 nm, the unit 1 Oe=79.5775 A·m-1), which was higher than the previous studies.

Keywords:  synthetic antiferromagnetic      exchange coupling field      interlayer exchange coupling strength  
Received:  30 August 2018      Revised:  04 November 2018      Accepted manuscript online: 
PACS:  75.50.Ee (Antiferromagnetics)  
  75.50.Ss (Magnetic recording materials)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11704191), the Jiangsu Specially-Appointed Professor, the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20171026), and the Six-Talent Peaks Project in Jiangsu Province, China (Grant No. XYDXX-038).

Corresponding Authors:  Fusheng Ma     E-mail:  phymafs@njnu.edu.cn

Cite this article: 

Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜) Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers 2018 Chin. Phys. B 27 127502

[1] Chun K C, Zhao H, Harms J D, Kim T H, Wang J P and Kim C H 2013 IEEE J. Solid-State Circuits 48 598
[2] Wolf S A, Awschalom D D, Buhramn R A, Daughton J M, Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[3] Zeng Z M, Zhang L, Fang B and Cai J 2018 Appl. Phys. Lett. 112 242408
[4] Gallagher W J and Parkin S S P 2006 IBM J. Res. Dev. 50 5
[5] Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813
[6] Jian-Gang Z H U 2008 Proc. IEEE 96 1786
[7] Yan S K, Bao J, Su X P, Xu X G and Jiang Y 2008 Acta Phys. Sin. 57 2504 (in Chinese)
[8] Jia X T and Xia K 2011 Acta Phys. Sin. 60 127202 (in Chinese)
[9] Wang Y, Cai H, Naviner L A B, Zhang Y, Klein J O and Zhao W S 2015 Microelectron. Reliab. 55 1649
[10] Liu P, Wang W H, Wang W C, Cheng Y H, Lu F and Liu H 2017 Chin. Phys. Lett. 34 027101
[11] Liu W, Liu X H, Cui W B, Gong W J and Zhang Z D 2013 Chin. Phys. B 22 027104
[12] Parkin S S P 1991 Phys. Rev. Lett. 67 3598
[13] Bruno P and Chappert C 1991 Phys. Rev. Lett. 67 1602
[14] Bruno P 1995 Phys. Rev. B 52 411
[15] Xiao Y, Chen S, Zhang Z, Ma B and Jin Q Y 2013 J. Appl. Phys. 113 17A325
[16] She S X, Wei D, Zheng Y, Qu B J, Ren T L, Liu X and Wei F L 2009 Chin. Phys. Lett. 26 127503
[17] Bi C, Almasi H, Price K, Newhouse-Illige T, Xu M, Allen S R, Fan X and Wang W 2017 Phys. Rev. B 95 104434
[18] Zhang P X, Liao L Y, Shi G Y, Zhang R Q, Wu H Q, Wang Y Y, Pan F and Song C 2018 Phys. Rev. B 97 214403
[19] Kravets A F, Timoshevskii A N, Yanchitsky B Z, Bergmann M A, Buhler J, Andersson S and Korenivski V 2012 Phys. Rev. B 86 214413
[20] Bloemen P J H, Kesteren H W, Swagten H J M and De M 1994 Phys. Rev. B 50 13505
[21] Oh S H, Lee J H, Shin R H, Shin Y, Meny C and Jo W 2015 Appl. Phys. Lett. 106 142902
[22] Parkin S S P, More N and Roche K P 1990 Phys. Rev. Lett. 64 2304
[23] Folkerts W 1991 J. Magn. Magn. Mater. 94 302
[24] Lin M S and Lai C H 2007 J. Appl. Phys. 101 09D121
[25] Liu Z Y and Adenwalla S 2003 Phys. Rev. Lett. 91 37207
[26] Alayo W and Baggio-Saitovitch E 2010 J. Appl. Phys. 107 073909
[27] Persat N and Dinia A 1997 Phys. Rev. B 56 2676
[28] Bandiera S, Sousa R C, Rodmacq B and Dieny B 2012 Appl. Phys. Lett. 100 142410
[29] Yakushiji K, Kubota H, Fukushima A and Yuasa S 2015 Appl. Phys. Express 8 083003
[30] Chatterjee J, Tahmasebi T, Swerts J, Kar G S and De Boeck J 2015 Appl. Phys. Express 8 63002
[31] Lee J B, An G G, Yang S M, Park H S, Chung W S and Hong J P 2016 Sci. Rep. 6 21324
[32] Inomata A, Abarra E N, Acharya B R, Akimoto H and Okamoto I 2001 IEEE Trans. Magn. 37 1449
[1] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[2] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[3] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[4] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[5] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[6] Incommensurate-commensurate magnetic phase transition in double tungstate Li2Co(WO4)2
Xiyu Chen(陈西煜), Ning Ding(丁宁), Meifeng Liu(刘美风), Tao Zou(邹涛), V. Ovidiu Garlea, Jingwen Gong(龚婧雯), Fei Liu(刘飞), Yunlong Xie(谢云龙), Lun Yang(杨伦), Shuhan Zheng(郑书翰), Xiuzhang Wang(王秀章), Shuai Dong(董帅), T. Charlton, and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2022, 31(4): 047501.
[7] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[8] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
[9] Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure
Na Li(李娜), Jin Tang(汤进), Lei Su(苏磊), Ya-Jiao Ke(柯亚娇), Wei Zhang(张伟), Zong-Kai Xie(谢宗凯), Rui Sun(孙瑞), Xiang-Qun Zhang(张向群), Wei He(何为), and Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2021, 30(11): 117502.
[10] Structure and frustrated magnetism of the two-dimensional triangular lattice antiferromagnet Na2BaNi(PO4)2
Fei Ding(丁飞), Yongxiang Ma(马雍翔), Xiangnan Gong(公祥南), Die Hu(胡蝶), Jun Zhao(赵俊), Lingli Li(李玲丽), Hui Zheng(郑慧), Yao Zhang(张耀), Yongjiang Yu(于永江), Lichun Zhang(张立春), Fengzhou Zhao(赵风周), and Bingying Pan(泮丙营). Chin. Phys. B, 2021, 30(11): 117505.
[11] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[12] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[13] Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2
Meng Yang(杨萌), Changjiang Yi(伊长江), Fengfeng Zhu(朱锋锋), Xiao Wang(王霄), Dayu Yan(闫大禹), Shanshan Miao(苗杉杉), Yixi Su(苏夷希), Youguo Shi(石友国). Chin. Phys. B, 2020, 29(6): 067502.
[14] Role of the spin anisotropy of the interchain interaction in weakly coupled antiferromagnetic Heisenberg chains
Yuchen Fan(樊宇辰), Rong Yu(俞榕). Chin. Phys. B, 2020, 29(5): 057505.
[15] Low temperature magnetism in the rare-earth perovskite GdScO3
Jie-Ming Sheng(盛洁明), Xu-Cai Kan(阚绪材), Han Ge(葛晗), Pei-Qian Yuan(袁培骞), Lei Zhang(张磊), Nan Zhao(赵南), Zong-Mei Song(宋宗美), Yuan-Yin Yao(姚远寅), Ji-Ning Tang(唐霁宁), Shan-Min Wang(王善民), Ming-Liang Tian(田明亮), Xin Tong(童欣), Liu-Suo Wu(吴留锁). Chin. Phys. B, 2020, 29(5): 057503.
No Suggested Reading articles found!