Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017405    DOI: 10.1088/1674-1056/ac3990
Special Issue: SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials
SPECIAL TOPIC—Superconductivity in vanadium-based kagome materials Prev   Next  

Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5

Fang-Hang Yu(喻芳航)1, Xi-Kai Wen(温茜凯)1, Zhi-Gang Gui(桂智刚)1, Tao Wu(吴涛)1, Zhenyu Wang(王震宇)1, Zi-Ji Xiang(项子霁)1, Jianjun Ying(应剑俊)1,†, and Xianhui Chen(陈仙辉)1,2,3,‡
1 Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China;
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  Controlling the anomalous Hall effect (AHE) inspires potential applications of quantum materials in the next generation of electronics. The recently discovered quasi-2D kagome superconductor CsV3Sb5 exhibits large AHE accompanying with the charge-density-wave (CDW) order which provides us an ideal platform to study the interplay among nontrivial band topology, CDW, and unconventional superconductivity. Here, we systematically investigated the pressure effect of the AHE in CsV3Sb5. Our high-pressure transport measurements confirm the concurrence of AHE and CDW in the compressed CsV3Sb5. Remarkably, distinct from the negative AHE at ambient pressure, a positive anomalous Hall resistivity sets in below 35 K with pressure around 0.75 GPa, which can be attributed to the Fermi surface reconstruction and/or Fermi energy shift in the new CDW phase under pressure. Our work indicates that the anomalous Hall effect in CsV3Sb5 is tunable and highly related to the band structure.
Keywords:  anomalous Hall effect (AHE)      charge-density-wave (CDW)      kagome superconductor      pressure effect  
Received:  18 October 2021      Revised:  11 November 2021      Accepted manuscript online:  15 November 2021
PACS:  74.62.Fj (Effects of pressure)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  71.45.Lr (Charge-density-wave systems)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0704900 and 2017YFA0303001), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY160000), the Science Challenge Project of China (Grant No. TZ2016004), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (Grant No. QYZDYSSWSLH021), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000), the National Natural Science Foundation of China (Grants Nos. 11888101 and 11534010), the Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2020HSC-CIP014), and the Fundamental Research Funds for the Central Universities, China (Grant No. WK3510000011).
Corresponding Authors:  Jianjun Ying, Xianhui Chen     E-mail:  yingjj@ustc.edu.cn;chenxh@ustc.edu.cn

Cite this article: 

Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉) Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5 2022 Chin. Phys. B 31 017405

[1] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[2] Smit J 1958 Physica 24 39
[3] Berger L 1970 Phys. Rev. B 2 4559
[4] Nagaosa N 2006 J. Phys. Soc. Jpn. 75 042001
[5] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[6] Haldane F D M 2004 Phys. Rev. Lett. 93 206602
[7] Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science 291 2573
[8] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 3681
[9] Liang T, Lin J J, Gibson Q, Kushwaha S, Liu M H, Wang W D, Xiong H Y, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z X, Cava R J and Ong N P 2018 Nat. Phys. 14 451
[10] Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W and Checkelsky J G 2016 Nat. Phys. 12 1119
[11] Smit J 1955 Physica 21 877
[12] Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N and Tokura Y 2007 Phys. Rev. Lett. 99 086602
[13] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[14] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[15] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J and Zhao Z X 2021 Chin. Phys. Lett. 38 057403
[16] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[17] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403
[18] Yang S Y, Wang Y J, Ortiz B R, Liu D F, Gayles J, Derunova E, Gonzalez-Hernandez R, Smejkal L, Chen Y L, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[19] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103
[20] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353
[21] Feng X, Jiang K, Wang Z and Hu J 2021 Sci. Bull. 66 1384
[22] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645
[23] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[24] Zhang Z Y, Chen Z, Zhou Y, Yuan Y F, Wang S Y, Wang J, Yang H Y, An C, Zhang L L, Zhu X D, Zhou Y H, Chen X L, Zhou J H and Yang Z R 2021 Phys. Rev. B 103 224513
[25] Wang Q, Kong P, Shi W, Pei C, Wen C, Gao L, Zhao Y, Yin Q, Wu Y and Li G 2021 Adv. Mater. 33 2102813
[26] Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G and Chen X L 2021 Chin. Phys. Lett. 38 057402
[27] Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F and Y L S 2021 arXiv: 2102.08356
[28] Sun Z L, Peng K L, Cui J H, Zhu C S, Zhuo W Z, Wang Z Y and Chen X H 2021 Phys. Rev. B 103 085116
[29] Chen X, Wang M, Gu C, Wang S, Zhou Y, An C, Zhou Y, Zhang B, Chen C, Yuan Y, Qi M, Zhang L, Zhou H, Zhou J, Yao Y and Yang Z 2019 Phys. Rev. B 100 165145
[30] Liu Z Y, Zhang T, Xu S X, Yang P T, Wang Q, Lei H C, Sui Y, Uwatoko Y, Wang B S, Weng H M, Sun J P and Cheng J G 2020 Phys. Rev. Mater. 4 044203
[31] Wang X, Li Z, Zhang M, Hou T, Zhao J, Li L, Rahman A, Xu Z, Gong J, Chi Z, Dai R, Wang Z, Qiao Z and Zhang Z 2019 Phys. Rev. B 100 014407
[32] Reis R D d, Ghorbani Zavareh M, Ajeesh M O, Kutelak L O, Sukhanov A S, Singh S, Noky J, Sun Y, Fischer J E, Manna K, Felser C and Nicklas M 2020 Phys. Rev. Mater. 4 051401
[33] Singh C, Singh V, Pradhan G, Srihari V, Poswal H K, Nath R, Nandy A K and Nayak A K 2020 Phys. Rev. Res. 2 043366
[34] Lee M, Kang W, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601
[35] Akiba K, Iwamoto K, Sato T, Araki S and Kobayashi T C 2020 Phys. Rev. Res. 2 043090
[36] Zheng G L, Chen Z, Tan C, Wang M Y, Zhu X D, Albarakati S, Algarni M, Partridge J, Farrar L, Zhou J H, Ning W, Tian M L, Fuhrer M S and Wang L 2021 arXiv: 2109.12588v1
[1] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[2] Evolution of superconductivity and charge order in pressurized RbV3Sb5
Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球). Chin. Phys. B, 2022, 31(1): 017404.
[3] A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光). Chin. Phys. B, 2022, 31(1): 017106.
[4] Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors
Bosen Wang(王铂森), Yaoqing Zhang(张尧卿), Shuxiang Xu(徐淑香), Kento Ishigaki, Kazuyuki Matsubayashi, Jin-Guang Cheng(程金光), Hideo Hosono, Yoshiya Uwatoko. Chin. Phys. B, 2019, 28(10): 107401.
[5] Pressure effect on magnetic phase transition and spin-glass-like behavior of GdCo2B2
Guang-Hui Hu(胡光辉), Ling-Wei Li(李领伟), Umehara Izuru. Chin. Phys. B, 2016, 25(6): 067501.
[6] Structural stability and electrical properties of AlB2-type MnB2 under high pressure
Meng Xiang-Xu (孟祥旭), Fan Jing (范靖), Bao Kuo (包括), Li Fang-Fei (李芳菲), Huang Xiao-Li (黄晓丽), Li Yan (李岩), Tian Fu-Bo (田夫波), Duan De-Fang (段德芳), Jin Xi-Lian (靳锡联), Zhu Pin-Wen (朱品文), He Zhi (何志), Zhou Qiang (周强), Gao Chun-Xiao (高春晓), Liu Bing-Bing (刘冰冰), Cui Tian (崔田). Chin. Phys. B, 2014, 23(1): 016102.
[7] Interplay of superconductivity and d-f correlation in CeFeAs1-xPxO1-yFy
Luo Yong-Kang (罗永康), Li Yu-Ke (李玉科), Wang Cao (王操), Lin Xiao (林效), Dai Jian-Hui (戴建辉), Cao Guang-Han (曹光旱), Xu Zhu-An (许祝安). Chin. Phys. B, 2013, 22(8): 087415.
[8] Density-functional theory study of the effect of pressure on the elastic properties of CaB6
Han Han (韩晗). Chin. Phys. B, 2013, 22(7): 077101.
[9] Hydrostatic pressure effect on the electron mobility in a ZnSe/Zn1-xCdx Se strained heterojunction
Bai Xian-Ping (白鲜萍), Ban Shi-Liang (班士良). Chin. Phys. B, 2008, 17(12): 4606-4613.
[10] Pressure effects in AlAs/InxGa1-xAs/GaAs resonant tunnelling diodes for application in micromachined sensors
Wang Jian(王建), Zhang Wen-Dong(张文栋), Xue Chen-Yang(薛晨阳), Xiong Ji-Jun(熊继军), Liu Jun(刘俊), and Xie Bin(谢斌) . Chin. Phys. B, 2007, 16(4): 1150-1154.
[11] Pressure effect on the electron mobility in AlAs/GaAs quantum wells
Hao Guo-Dong(郝国栋), Ban Shi-Liang(班士良), and Jia Xiu-Min(贾秀敏). Chin. Phys. B, 2007, 16(12): 3766-3771.
No Suggested Reading articles found!