Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110306    DOI: 10.1088/1674-1056/aba9ca
RAPID COMMUNICATION Prev   Next  

Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature

Xue-Jing Feng(冯雪景) and Lan Yin(尹澜)
School of Physics, Peking University, Beijing 100871, China
Abstract  

We study the ferromagnetic transition of a two-component homogeneous dipolar Fermi gas with 1D spin–orbit coupling (SOC) at finite temperature. The ferromagnetic transition temperature is obtained as functions of dipolar constant λd, spin–orbit coupling constant λSOC and contact interaction constant λs. It increases monotonically with these three parameters. In the ferromagnetic phase, the Fermi surfaces of different components can be deformed differently. The phase diagrams at finite temperature are obtained.

Keywords:  dipolar Fermi gas      stoner model      spin-orbit coupling  
Received:  15 May 2020      Revised:  29 June 2020      Accepted manuscript online:  28 July 2020
Fund: the National Key Research and Development Project of China (Grant No. 2016YFA0301501).
Corresponding Authors:  Corresponding author. E-mail: yinlan@pku.edu.cn   

Cite this article: 

Xue-Jing Feng(冯雪景) and Lan Yin(尹澜) Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature 2020 Chin. Phys. B 29 110306

Fig. 1.  

Magnetization M as functions of λd, λT, λSOC, and λs. (a) M increases with λd for λSOC = 0.7, λT = 0.1 and λs = 0; (b) M decreases with λT for λSOC = 1, λd = 0.26 and λs = 0; (c) M increases with λSOC for λd = 0.25, λT = 0.1 and λs = 0; (d) M increases with λs for λSOC, λd = 0.02 and λT = 0.1.

Fig. 2.  

Ferromagnetic transition temperature as functions of λs, λd, λSOC. In (a), the solid line is the ferromagnetic transition temperature as a function of λs with λSOC = 0.6 and λd = 0.02 and the red dashed line is the result of the Stoner model. In (b), the solid line is the temperature for λSOC = 1 and λs = 0. The dashed line is the temperature for λSOC = 0.8 and λs = 0. The dotted line is the temperature for λSOC = 1.0 and λs = 0.2. In (c), the solid line is the temperature for λd = 0.27 and λs = 0. The dashed line is the temperature for λd = 0.22 and λs = 0. The dotted line is the temperature for λd = 0.27 and λs = 0.4. In the inset, these lines are saturated to different values at large λSOC.

Fig. 3.  

Phase diagram at λT = 0.1. The horizontal axis represents SOC constant λSOC and the vertical axis represents DDI constant λd. The solid and dotted lines are ferromagnetic transition lines. The solid line is for λs = 0 while the dotted line is for λs = 1.

Fig. 4.  

Parameters α1 and α2 as a function of λT with λSOC = 1.0, λd = 0.26 and λs = 0. As λT increases, α1 and α2 meet at the ferromagnetic transition temperature and then slowly approach to 1 from below, which indicates that the two Fermi surfaces are deformed differently in the ferromagnetic phase. The red solid line stands for the ideal Fermi surface.

[1]
Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198 DOI: 10.1126/science.269.5221.198
[2]
Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969 DOI: 10.1103/PhysRevLett.75.3969
[3]
Ni K K, Ospelkaus S, de Miranda M H G, Pe’Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231 DOI: 10.1126/science.1163861
[4]
Bo Y, Moses S A, Bryce G, Covey J P, Hazzard K R A, Ana Maria R, Jin D S, Jun Y 2013 Nature 501 521 DOI: 10.1038/nature12483
[5]
Chotia A, Neyenhuis B, Moses S A, Yan B, Covey J P, Foss-Feig M, Rey A M, Jin D S, Ye J 2012 Phys. Rev. Lett. 108 080405 DOI: 10.1103/PhysRevLett.108.080405
[6]
Ni K K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, de Miranda M H G, Bohn J L, Ye J, Jin D S 2010 Nature 464 1324 DOI: 10.1038/nature08953
[7]
Wu C H, Park J W, Ahmadi P, Will S, Zwierlein M W 2012 Phys. Rev. Lett. 109 085301 DOI: 10.1103/PhysRevLett.109.085301
[8]
Lu M, Burdick N Q, Lev B L 2012 Phys. Rev. Lett. 108 215301 DOI: 10.1103/PhysRevLett.108.215301
[9]
You L, Marinescu M 1999 Phys. Rev. A 60 2324 DOI: 10.1103/PhysRevA.60.2324
[10]
Cooper N R, Shlyapnikov G V 2009 Phys. Rev. Lett. 103 155302 DOI: 10.1103/PhysRevLett.103.155302
[11]
Levinsen J, Cooper N R, Shlyapnikov G V 2011 Phys. Rev. A 84 013603 DOI: 10.1103/PhysRevA.84.013603
[12]
Wu C, Hirsch J E 2010 Phys. Rev. B 81 020508 DOI: 10.1103/PhysRevB.81.020508
[13]
Pikovski A, Klawunn M, Shlyapnikov G V, Santos L 2010 Phys. Rev. Lett. 105 215302 DOI: 10.1103/PhysRevLett.105.215302
[14]
Gadsbølle A L, Bruun G M 2012 Phys. Rev. A 86 033623 DOI: 10.1103/PhysRevA.86.033623
[15]
Liu B, Yin L 2012 Phys. Rev. A 86 031603 DOI: 10.1103/PhysRevA.86.031603
[16]
Liu B, Yin L 2011 Phys. Rev. A 84 043630 DOI: 10.1103/PhysRevA.84.043630
[17]
Gorshkov A V, Manmana S R, Chen G, Ye J, Demler E, Lukin M D, Rey A M 2011 Phys. Rev. Lett. 107 115301 DOI: 10.1103/PhysRevLett.107.115301
[18]
Liao R, Brand J 2010 Phys. Rev. A 82 063624 DOI: 10.1103/PhysRevA.82.063624
[19]
Balibar S 2010 Nature 464 176 DOI: 10.1038/nature08913
[20]
Zeng T S, Yin L 2014 Phys. Rev. B 89 174511 DOI: 10.1103/PhysRevB.89.174511
[21]
Zhang Y C, Maucher F, Pohl T 2019 Phys. Rev. Lett. 123 015301 DOI: 10.1103/PhysRevLett.123.015301
[22]
Bhongale S G, Mathey L, Tsai S W, Clark C W, Zhao E 2012 Phys. Rev. Lett. 108 145301 DOI: 10.1103/PhysRevLett.108.145301
[23]
Yamaguchi Y, Sogo T, Ito T, Miyakawa T 2010 Phys. Rev. A 82 013643 DOI: 10.1103/PhysRevA.82.013643
[24]
Burdick N Q, Tang Y, Lev B L 2016 Phys. Rev. X 6 031022 DOI: 10.1103/PhysRevX.6.031022
[25]
Jo G B, Lee Y R, Choi J H, Christensen C A, Kim T H, Thywissen J H, Pritchard D E, Ketterle W 2009 Science 325 1521 DOI: 10.1126/science.1177112
[26]
Valtolina G, Scazza F, Amico A, Burchianti A, Recati A, Enss T, Inguscio M, Zaccanti M, Roati G 2017 Nat. Phys. 13 704 DOI: 10.1038/nphys4108
[27]
Stoner E C 1938 Proc. R. Soc. London. Ser. A 165 372 DOI: 10.1098/rspa.1938.0066
[28]
Stoner E C 1933 London Edinburgh Dublin Philos. Mag. J. Sci. 15 1018 DOI: 10.1080/14786443309462241
[29]
Duine R A, MacDonald A H 2005 Phys. Rev. Lett. 95 230403 DOI: 10.1103/PhysRevLett.95.230403
[30]
Ryszkiewicz J, Brewczyk M, Karpiuk T 2020 Phys. Rev. A 101 013618 DOI: 10.1103/PhysRevA.101.013618
[31]
He L, Liu X J, Huang X G, Hu H 2016 Phys. Rev. A 93 063629 DOI: 10.1103/PhysRevA.93.063629
[32]
Zhai H 2009 Phys. Rev. A 80 051605 DOI: 10.1103/PhysRevA.80.051605
[33]
Pilati S, Bertaina G, Giorgini S, Troyer M 2010 Phys. Rev. Lett. 105 030405 DOI: 10.1103/PhysRevLett.105.030405
[34]
Deng T S, Lu Z C, Shi Y R, Chen J G, Zhang W, Yi W 2018 Phys. Rev. A 97 013635 DOI: 10.1103/PhysRevA.97.013635
[35]
Massignan P, Bruun G M 2011 Eur. Phys. J. D 65 83 DOI: 10.1140/epjd/e2011-20084-5
[36]
Fregoso B M, Fradkin E 2009 Phys. Rev. Lett. 103 205301 DOI: 10.1103/PhysRevLett.103.205301
[37]
Feng X J, Yin L 2020 Chin. Phys. Lett. 37 020301 DOI: 10.1088/0256-307X/37/2/020301
[38]
Miyakawa T, Sogo T, Pu H 2008 Phys. Rev. A 77 061603 DOI: 10.1103/PhysRevA.77.061603
[39]
Ronen S, Bohn J L 2010 Phys. Rev. A 81 033601 DOI: 10.1103/PhysRevA.81.033601
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
No Suggested Reading articles found!