Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110307    DOI: 10.1088/1674-1056/aba614
GENERAL Prev   Next  

Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal

Mei-Jiao Wang(王美姣)1, Yun-Jie Xia(夏云杰)2,3, Yang Yang(杨阳)1, Liao-Zhen Cao(曹连振)1, Qin-Wei Zhang(张钦伟)1, Ying-De Li(李英德)1, and Jia-Qiang Zhao(赵加强)1, †
1 Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, China
2 College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
3 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
Abstract  

Based on the quantum technique of the weak measurement and quantum measurement reversal (WMR), we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels with memory, i.e., the amplitude damping channel, the phase damping channel, the bit flip channel, and the depolarizing channel. For a given initial state | ψ 〉 = a| 00 〉 + d| 11 〉, it is found that the WMR operation indeed helps to protect entanglement from the above four quantum channels with memory, and the protection effect of WMR scheme is better when the coefficient a is small. For the other initial state | ϕ 〉 = b| 01 〉 + c| 10 〉, the effect of the protection scheme is the same regardless of the coefficient b and the WMR operation can protect entanglement in the amplitude damping channel with memory. Moreover, the protection of entanglement in quantum noise channels without memory in contrast to the results of the channels with memory is more effective. For | ψ 〉 or | ϕ 〉, we also find that the memory parameters play a significant role in the suppression of entanglement sudden death and the initial entanglement can be drastically amplified. Another more important result is that the relationship between the concurrence, the memory parameter, the weak measurement strength, and quantum measurement reversal strength is found through calculation and discussion. It provides a strong basis for the system to maintain maximum entanglement in the nosie channel.

Keywords:  quantum entanglement      weak measurement and quantum measurement reversal      quantum channel with memory      concurrence  
Received:  08 May 2020      Revised:  06 July 2020      Accepted manuscript online:  15 July 2020
Fund: the Natural Science Foundation of Shandong Province, China (Grant No. ZR2017MF040).
Corresponding Authors:  Corresponding author. E-mail: zhaojiaqiang@wfu.edu.cn   

Cite this article: 

Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强) Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal 2020 Chin. Phys. B 29 110307

Fig. 1.  

In the AD channel with memory, the concurrence ${C}_{d}^{A\psi (\phi)}$ is the function of decoherent strength r and the memory parameter η for two initial entangled states | ψ 〉 = a|00〉 + d| 11 〉 and | ϕ 〉 = b| 01 〉 + c| 10 〉. We assume (a) | a | = 1 / 3, (b) | b | = 1 / 3.

Fig. 2.  

In the AD channel with memory, χ is a function of the weak measurement strength p and the memory parameter η for the initially entangled states | ψ 〉 = a| 00 〉 + d| 11 〉. We assume r = 0.2, (a) $a=\sqrt{0.1}$; (b) a = 1 / 3; (c) $a=\sqrt{0.2}$; (d) $a=\sqrt{0.4}$; (e) $a=\sqrt{2}/2$; (f) $a=\sqrt{0.6}$; (g) $a=\sqrt{0.8}$; (h) $a=\sqrt{8}/3$; (i) $a=\sqrt{0.9}$.

Fig. 3.  

In the AD channel with memory, the concurrence ${C}_{r}^{A\psi (\phi)}$ is a function of WM strength p (q) for the two initially entangled states | ψ 〉 = a| 00 〉 + d| 11 〉 and | ϕ 〉 = b| 01 〉 + c| 10 〉. We assume r = 0.2, (a) | a | = 1 / 3, (b) | b | = 1/3.

Fig. 4.  

In the quantum channels with memory, χA(B,D)ϕ is a function of the weak measurement strength p and the memory parameter η for the initially entangled state | ϕ 〉 = b| 01 〉 + c| 10 〉. We assume r = 0.2 and | b | = 1 / 3.

Fig. 5.  

In the quantum channels with memory, the concurrence ${C}_{d}^{P(B,D)\psi (\phi)}$ is a function of decoherent strength r and the memory parameter η for the two initial entangled states | ψ 〉 = a| 00 〉 + d| 11 〉 and | ϕ 〉 = b| 01 〉 + c| 10 〉. We assume | a | = 1 / 3 and | b | = 1 / 3. (a) PD channel; (b) BF channel; (c) depolarizing channel.

Fig. 6.  

In the BF channel with memory, ${\chi }^{B\psi }$ is a function of the weak measurement strength p and the memory parameter η for the initially entangled state | ψ 〉 = a| 00 〉 + d| 11 〉. We assume r = 0.2, (a) $a=\sqrt{0.1}$; (b) a = 1 / 3; (c) $a=\sqrt{0.2}$; (d) $a=\sqrt{0.4}$; (e) $a=\sqrt{2}/2$; (f) $a=\sqrt{0.6}$; (g) $a=\sqrt{0.8}$; (h) $a=\sqrt{8}/3$; (i) $a=\sqrt{0.9}$.

Fig. 7.  

In the BF channel with memory, the concurrence ${C}_{r}^{B\psi (\phi)}$ is a function of weak measurement strength p (q) for two initially entangled states | ψ 〉 = a| 00 〉 + d| 11 〉 and | ϕ 〉 = b| 01 〉 + c| 10 〉. We assume r = 0.2, (a) | a | = 1 / 3, (b) | b | = 1 / 3.

[1]
Horodedecki R, Horodedecki P, Horodedecki M, Horodedecki K 2009 Rev. Mod. Phys. 81 865 DOI: 10.1103/RevModPhys.81.865
[2]
Zyczkowski K, Horodedecki P, Horodedecki M, Horodedecki R 2001 Phys. Rev. A 65 012101 DOI: 10.1103/PhysRevA.65.012101
[3]
Nielsen M, Chuang I 2000 Quantum Information and Computation Cambridge Cambridge University Press 12 15
[4]
Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404 DOI: 10.1103/PhysRevLett.93.140404
[5]
Yu T, Eberly J H 2007 Phys. Rev. Lett. 97 140403 DOI: 10.1103/PhysRevLett.97.140403
[6]
Almeida P M, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579 DOI: 10.1126/science.1139892
[7]
Eberly J H, Yu T 2007 Science 316 555 DOI: 10.1126/science.1142654
[8]
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895 DOI: 10.1103/PhysRevLett.70.1895
[9]
Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881 DOI: 10.1103/PhysRevLett.69.2881
[10]
Ekert A K 1991 Phys. Rev. Lett. 67 661 DOI: 10.1103/PhysRevLett.67.661
[11]
Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M, Wootters W K 2001 Phys. Rev. Lett. 87 077902 DOI: 10.1103/PhysRevLett.87.077902
[12]
Berry D W, Sanders B C 2003 Phys. Rev. Lett. 90 057901 DOI: 10.1103/PhysRevLett.90.057901
[13]
Huelga S F, Vaccaro J A, Chefles A, Plenio M B 2001 Phys. Rev. A 63 042303 DOI: 10.1103/PhysRevA.63.042303
[14]
Cirac J I, Ekert A K, Huelga S F, Macchiavello C 1999 Phys. Rev. A 59 4249 DOI: 10.1103/PhysRevA.59.4249
[15]
Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351 DOI: 10.1103/PhysRevLett.60.1351
[16]
Aharonov Y, Albert D Z, Casher A, Vaidman L 1987 Phys. Lett. A 124 199 DOI: 10.1016/0375-9601(87)90619-0
[17]
Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103 DOI: 10.1103/PhysRevA.81.040103
[18]
Lee J C, Jeong Y C, Kim Y S, Kim Y H 2011 Opt. Express 19 16309 DOI: 10.1364/OE.19.016309
[19]
Sun Q, Al-Amri M, Zubairy M S 2009 Phys. Rev. A 80 033838 DOI: 10.1103/PhysRevA.80.033838
[20]
Tan Q Y, Wang L, Li J X, Tang J W, Wang X W 2013 Int. J. Theor. Phys. 52 612 DOI: 10.1007/s10773-012-1367-4
[21]
Sun Q, Al-Amri M, Davidovich L, Zubairy M S 2010 Phys. Rev. A 82 052323 DOI: 10.1103/PhysRevA.82.052323
[22]
Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117 DOI: 10.1038/NPHYS2178
[23]
Man Z X, Xia Y J 2012 Phys. Rev. A 86 012325 DOI: 10.1103/PhysRevA.86.012325
[24]
Man Z X, Xia Y J 2012 Phys. Rev. A 86 052322 DOI: 10.1103/PhysRevA.86.052322
[25]
Cao L Z, Liu X, Zhao J Q, Yang Y, Li Y D, Wang X Q, Lu H X 2016 Acta Phys. Sin. 65 030303 in Chinese DOI: 10.7498/aps.65.030303
[26]
Xiao X 2014 Phys. Scr. 89 065102 DOI: 10.1088/0031-8949/89/6/065102
[27]
Xiao X, Li T L 2013 Eur. Phys. J. D 67 204 DOI: 10.1140/epjd/e2013-40036-3
[28]
Liu Y, Zou H M, Fang M F 2018 Chin. Phys. B 27 010304 DOI: 10.1088/1674-1056/27/1/010304
[29]
Yang L W, Xia Y J 2016 Chin. Phys. B 25 110303 DOI: 10.1088/1674-1056/25/11/110303
[30]
Nigum A, Toor A H 2013 arXiv:1307.5403v1 [quant-ph]
[31]
Xiao X, Yao Y, Xie Y M, Wang X H, Li Y L 2016 Quantum Inf. Process. 15 3881 DOI: 10.1007/s11128-016-1356-2
[32]
Guo Y N, Tian Q L, Zeng K, Li Z D 2017 Quantum Inf. Process. 16 310 DOI: 10.1007/s11128-017-1749-x
[33]
Macchiavello C, Massimo Palma G 2002 Phys. Rev. A 65 050301 DOI: 10.1103/PhysRevA.65.050301
[34]
Yeo Y, Skeen A 2003 Phys. Rev. A 67 064301 DOI: 10.1103/PhysRevA.67.064301
[35]
Wootters W K 1998 Phys. Rev. Lett. 80 2245 DOI: 10.1103/PhysRevLett.80.2245
[36]
[37]
Peres A 1996 Phys. Rev. Lett. 77 1413 DOI: 10.1103/PhysRevLett.77.1413
[38]
Korotkov A N 1999 Phys. Rev. B 60 5737 DOI: 10.1103/PhysRevB.60.5737
[39]
Bellomo B, Franco R L, Compagno G 2007 Phys. Rev. Lett. 99 160502 DOI: 10.1103/PhysRevLett.99.160502
[40]
D’Arrigo A, Benenti G, Falci G 2007 New J. Phys. 9 310 DOI: 10.1088/1367-2630/9/9/310
[41]
Macchiavello C, Palma G M, Virmani S 2004 Phys. Rev. A 69 010303 DOI: 10.1103/PhysRevA.69.010303
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[8] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[9] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[10] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[11] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[12] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[13] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[14] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[15] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
No Suggested Reading articles found!