Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090307    DOI: 10.1088/1674-1056/ac0bb3
GENERAL Prev   Next  

Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation

Jing Li(李静)1, Lijuan Hu(胡丽娟)2, Jing Lu(卢竞)1, and Lan Zhou(周兰)1,2,†
1 Affiliation Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of the Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China;
2 College of Science, Hunan University of Science and Engineering, Yongzhou 425199, China
Abstract  We investigate the entanglement dynamics of two distinguishable two-level systems (TLSs) characterized by energy difference δ located inside a rectangular hollow metallic waveguide of transverse dimensions a and b. The effects of energy difference δ and the inter-TLS distance on the time evolution of the concurrence of the TLSs are examined in the single excitation subspace when the energy separation of the TLS is far away from the cutoff frequencies of the transverse mode.
Keywords:  entanglement      concurrence      two two-level systems      energy separations  
Received:  08 April 2021      Revised:  22 May 2021      Accepted manuscript online:  17 June 2021
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975095, 12075082, and 11935006), the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2020RC4047), and the Construct Program of Applied Characteristic Discipline in Hunan University of Science and Engineering.
Corresponding Authors:  Lan Zhou     E-mail:  zhoulan@hunnu.edu.cn

Cite this article: 

Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰) Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation 2021 Chin. Phys. B 30 090307

[1] Kimble H J 2008 Nature 453 1023
[2] Dicke R H 1954 Phys. Rev. 93 99
[3] Lehmberg R H 1970 Phys. Rev. A 2 883
[4] Milonni P W and Knight P L 1974 Phys. Rev. A 10 1096
[5] Milonni P W and Knight P L 1975 Phys. Rev. A 11 1090
[6] Cook R J and Milonni P W 1987 Phys. Rev. A 35 5081
[7] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[8] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[9] Ficek Z and Tanas R 2006 Phys. Rev. A 74 024304
[10] Ficek Z and Tanas R 2008 Phys. Rev. A 77 054301
[11] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604
[12] Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805
[13] Lu J, Wang Z H and Zhou L 2015 Opt. Express. 23 22955
[14] Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001
[15] Shen J T and Fan S 2005 Opt. Lett. 30 2001
[16] Shen J T and Fan S 2007 Phys. Rev. Lett. 98 153003
[17] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
[18] Dong H, Gong Z R, Ian H, Zhou L and Sun C P 2009 Phys. Rev. A 79 063847
[19] Zheng H X, D Gauthier J and Baranger H U 2010 Phys. Rev. A 82 063816
[20] Zheng H X, D Gauthier J and Baranger H U 2011 Phys. Rev. Lett. 107 223601
[21] Zheng H X, D Gauthier J and Baranger H U 2012 Phys. Rev. A 85 043832
[22] Zheng H X, D Gauthier J and Baranger H U 2013 Phys. Rev. Lett. 111 090502
[23] Tsoi T S and Law C K 2008 Phys. Rev. A 78 063832
[24] Shi T and Sun C P 2009 Phys. Rev. B 79 205111
[25] Shi T, Fan S and Sun C P 2011 Phys. Rev. A 84 063803
[26] Shi T and Fan S 2013 Phys. Rev. A 87 063818
[27] Laakso M and Pletyukhov M 2014 Phys. Rev. Lett. 113 183601
[28] Redchenko E S and Yudson V I 2014 Phys. Rev. A 90 063829
[29] Ordonez G and Kim Sungyun 2004 Phys. Rev. A 70 032702
[30] Fang Y L L and Baranger H U 2015 Phys. Rev. A 91 053845
[31] Roy D, Wilson C M and Firstenberg O 2017 Rev. Mod. Phys. 89 021001
[32] Sinha K, Meystre P, Goldschmidt E A, Fatemi F K, Rolston S L and Solano P 2020 Phys. Rev. Lett. 124 043603
[33] Sinha K, Gonz A, Yong L and Pablo S 2020 Phys. Rev. A. 102 043718
[34] Kong J A 1986 Electromagnetic Wave Theory (New York: John Wiley and Sons) p. 135
[35] Dung H T and Ujihara K 1999 Phys. Rev. A 59 2524
[36] Dorner U and Zoller P 2002 Phys. Rev. A 66 023816
[37] Rist S, Eschner J, Hennrich M and Morigi G 2008 Phys. Rev. A 78 013808
[38] Gulfam Q A, Ficek Z and Evers J 2012 Phys. Rev. A 86 022325
[39] Lu J, Zhou L and Fu H C 2013 Phys. Lett. A 377 1255
[40] Wootters William K 1998 Phys. Rev. Lett. 80 2245
[41] Hu L, Lu G, Lu J and Zhou L 2020 Quantum Inf. Process. 19 81
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!