|
|
Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation |
Jing Li(李静)1, Lijuan Hu(胡丽娟)2, Jing Lu(卢竞)1, and Lan Zhou(周兰)1,2,† |
1 Affiliation Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of the Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China; 2 College of Science, Hunan University of Science and Engineering, Yongzhou 425199, China |
|
|
Abstract We investigate the entanglement dynamics of two distinguishable two-level systems (TLSs) characterized by energy difference δ located inside a rectangular hollow metallic waveguide of transverse dimensions a and b. The effects of energy difference δ and the inter-TLS distance on the time evolution of the concurrence of the TLSs are examined in the single excitation subspace when the energy separation of the TLS is far away from the cutoff frequencies of the transverse mode.
|
Received: 08 April 2021
Revised: 22 May 2021
Accepted manuscript online: 17 June 2021
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975095, 12075082, and 11935006), the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2020RC4047), and the Construct Program of Applied Characteristic Discipline in Hunan University of Science and Engineering. |
Corresponding Authors:
Lan Zhou
E-mail: zhoulan@hunnu.edu.cn
|
Cite this article:
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰) Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation 2021 Chin. Phys. B 30 090307
|
[1] Kimble H J 2008 Nature 453 1023 [2] Dicke R H 1954 Phys. Rev. 93 99 [3] Lehmberg R H 1970 Phys. Rev. A 2 883 [4] Milonni P W and Knight P L 1974 Phys. Rev. A 10 1096 [5] Milonni P W and Knight P L 1975 Phys. Rev. A 11 1090 [6] Cook R J and Milonni P W 1987 Phys. Rev. A 35 5081 [7] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404 [8] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403 [9] Ficek Z and Tanas R 2006 Phys. Rev. A 74 024304 [10] Ficek Z and Tanas R 2008 Phys. Rev. A 77 054301 [11] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604 [12] Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805 [13] Lu J, Wang Z H and Zhou L 2015 Opt. Express. 23 22955 [14] Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001 [15] Shen J T and Fan S 2005 Opt. Lett. 30 2001 [16] Shen J T and Fan S 2007 Phys. Rev. Lett. 98 153003 [17] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501 [18] Dong H, Gong Z R, Ian H, Zhou L and Sun C P 2009 Phys. Rev. A 79 063847 [19] Zheng H X, D Gauthier J and Baranger H U 2010 Phys. Rev. A 82 063816 [20] Zheng H X, D Gauthier J and Baranger H U 2011 Phys. Rev. Lett. 107 223601 [21] Zheng H X, D Gauthier J and Baranger H U 2012 Phys. Rev. A 85 043832 [22] Zheng H X, D Gauthier J and Baranger H U 2013 Phys. Rev. Lett. 111 090502 [23] Tsoi T S and Law C K 2008 Phys. Rev. A 78 063832 [24] Shi T and Sun C P 2009 Phys. Rev. B 79 205111 [25] Shi T, Fan S and Sun C P 2011 Phys. Rev. A 84 063803 [26] Shi T and Fan S 2013 Phys. Rev. A 87 063818 [27] Laakso M and Pletyukhov M 2014 Phys. Rev. Lett. 113 183601 [28] Redchenko E S and Yudson V I 2014 Phys. Rev. A 90 063829 [29] Ordonez G and Kim Sungyun 2004 Phys. Rev. A 70 032702 [30] Fang Y L L and Baranger H U 2015 Phys. Rev. A 91 053845 [31] Roy D, Wilson C M and Firstenberg O 2017 Rev. Mod. Phys. 89 021001 [32] Sinha K, Meystre P, Goldschmidt E A, Fatemi F K, Rolston S L and Solano P 2020 Phys. Rev. Lett. 124 043603 [33] Sinha K, Gonz A, Yong L and Pablo S 2020 Phys. Rev. A. 102 043718 [34] Kong J A 1986 Electromagnetic Wave Theory (New York: John Wiley and Sons) p. 135 [35] Dung H T and Ujihara K 1999 Phys. Rev. A 59 2524 [36] Dorner U and Zoller P 2002 Phys. Rev. A 66 023816 [37] Rist S, Eschner J, Hennrich M and Morigi G 2008 Phys. Rev. A 78 013808 [38] Gulfam Q A, Ficek Z and Evers J 2012 Phys. Rev. A 86 022325 [39] Lu J, Zhou L and Fu H C 2013 Phys. Lett. A 377 1255 [40] Wootters William K 1998 Phys. Rev. Lett. 80 2245 [41] Hu L, Lu G, Lu J and Zhou L 2020 Quantum Inf. Process. 19 81 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|