Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034205    DOI: 10.1088/1674-1056/abc2c3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes

M Rastegarzadeh and M K Tavassoly†
1 Laser and Optics Group, Faculty of Physics, Yazd University, Yazd 89195-741, Iran
Abstract  We investigate an entangled three-qubit system in which only one of the qubits experiences the decoherence effect by considering a non-Hermitian Hamiltonian, while the other two qubits are isolated, i.e., do not interact with environment, directly. Then, the time evolution of the density matrix (for the pure as well as mixed initial density matrix) and the corresponding reduced density matrices are obtained, by which we are able to utilize the dissipative non-Hermitian Hamiltonian model with Markovian and non-Markovian regimes via adjusting the strange of the non-Hermitian term of the total Hamiltonian of the under-considered system.
Keywords:  non-Hermitian Hamiltonian      entanglement      concurrence measure      Markovian and non-Markovian regimes  
Received:  14 July 2020      Revised:  30 September 2020      Accepted manuscript online:  20 October 2020
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Bg (Entanglement production and manipulation)  
Corresponding Authors:  Corresponding author. E-mail: mktavassoly@yazd.ac.ir   

Cite this article: 

M Rastegarzadeh and M K Tavassoly Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes 2021 Chin. Phys. B 30 034205

1 Bennett C H, Brassard G, Cr\'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
2 Wang X, Sanders B C and Berry D W 2003 Phys. Rev. A 67 042323
3 Zhou Y Y, Li P F, Yan Z H and Jia X J 2019 Acta. Phys. Sin. 68 234203 (in Chinese)
4 Amazioug M, Jebli L, Nassik M and Habiballah N 2020 Chin. Phys. B 29 020304
5 Lu L C, Wang G Y, Ren B C, Zhang M and Deng F G 2020 Chin. Phys. B 29 010305
6 Breuer H P and Petruccione F2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
7 Scully M O and Zubairy M S1997 Quantum Optics (Cambridge: Cambridge University Press)
8 Leggett A J, Chakravarty S, Dorsey, A T, Fisher Matthew P, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
9 Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
10 Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103
11 Zhong W, Sun Z, Ma J, Wang X and Nori F 2013 Phys. Rev. A 87 022337
12 Tan J, Kyaw T H and Yeo Y 2010 Phys. Rev. A 81 062119
13 Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
14 Fan Z L, Ren Y K and Zeng H S 2016 Chin. Phys. B 25 010303
15 Mu Q and Lin P 2020 Chin. Phys. B 29 060304
16 Nourmandipour A, Tavassoly M K and Rafiee M 2016 Phys. Rev. A 93 022327
17 Marshall J, Venuti L C and Zanardi P 2017 Phys. Rev. A 96 052113
18 Golkar S and Tavassoly M K 2018 Chin. Phys. B 27 040303
19 Ban M, Kitajima S and Shibata F 2005 J. Phys. A 38 7161
20 Yu T and Eberly J H 2007 Quantum Inform. Comput. 7 459
21 Bagarell F, Lattuca M, Passante R, Rizzuto L and Spagnolo S 2015 Phys. Rev. A 91 042134
22 Sergi A and Zloshchastiev K G 2013 Int. J. Mod. Phys. B 27 1345053
23 Sergi A and Zloshchastiev K G 2016 J. Stat. Mech. 2016 033102
24 Sergi A and Giaquinta P V 2016 Entropy 18 451
25 Zhang S Y, Fang M F and Xu L 2017 Quant. Inf. Proc. 16 234
26 Wang Y Y and Fang M F 2020 Chin. Phys. B 29 030304
27 Dong Y, Zhang W J, Liu J and Xie X T 2019 Chin. Phys. B 28 114202
28 He Z, Nie Z Y and Wang Q 2019 Chin. Phys. B 28 120305
29 Huang Y, Xiong H N, Zhong W, Hu Z D and Ye E J 2016 Europhys. Lett. 114 20002
30 Mirza Imran M, van Enk, S J and Kimble H J 2013 J. Opt. Soc. Am. B 30 2640
31 Guo J L and Wei J L 2015 Ann. Phys. 354 522
32 Ma P C, Chen G B, Li X W and Zhan Y B 2016 Laser Phys. 26 105201
33 Arthur T T and Fai M C 2017 Quant. Inf. Proc. 17 136
34 Behzadi N, Ahansaz B and Faizi E 2017 Eur. Phys. J. D 71 280
35 Neergaard Nielsen J S, Nielsen B M, Hettich C, Molmer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604
36 Prevedel R, Gronenberg G, Tame M S, Paternosto M, Walther P, Kim M S and Zeilinger A 2009 Phys. Rev. Lett. 103 020503
37 DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H and Schoelkopf R J 2010 Nature 467 574
38 Zhao C, Zhu M and Ye L 2011 J. Opt. Soc. Am. B 28 1740
39 Zhang Y h and Xia Y j 2015 Laser Phys. 25 055201
40 Wang X W, Yu S, Zhang D Y and Oh C H 2016 Sci. Rep. 6 22408
41 H\"affner H, H\"ansel W, Roos C F, Benhelm J, Chek-al-kar D, Chwalla M, K\"aber T, Rapol U D, Riebe M, Schmidt P O, Becher C, G\"ahe O, D\"ur W and Blatt R 2005 Nature 438 643
42 D\"ur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
43 Ac\'ín A, Andrianov A, Costa L, Jan\'e E, Latorre J I and Tarrach R 2000 Phys. Rev. Lett. 85 1560
44 Ac\'ín A, Bru\ss D, Lewenstein M, and Sanpera A 2001 Phys. Rev. Lett. 87 040401
45 Wootters W K 2001 Quantum Inform. Comput. 1 27
46 Li J G, Zou J and Shao B 2010 Phys. Rev. A 82 042318
47 Tong Q J, An J H, Luo H G and Oh C H 2010 Phys. Rev. A 81 052330
48 Zhou J, Wu C, Zhu M and Guo H 2009 J. Phys. B: At. Mol. Opt. Phys. 42 215505
49 Golkar S and Tavassoly M K 2018 Laser Phys. Lett. 15 035205
50 Lopez C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
No Suggested Reading articles found!