Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080401    DOI: 10.1088/1674-1056/ab969d
GENERAL Prev   Next  

New measuring method of fiber alignment in precision torsion pendulum experiments

Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚)
College of Science, Hubei University of Automotive and Technology, Shiyan 442002, China
Abstract  

Testing the extreme weak gravitational forces between torsion pendulum and surrounding objects will indicate new physics which attracts many interests. In these measurements, the fiber alignment plays a crucial role in fulfilling high precision placement measurement, especially in measuring the deviation between the fiber and source mass or other objects. The traditional way of the fiber alignment requires to measure the component of the pendulum body and then transfer to the torsion fiber by some complicated calculations. A new method is reported here by using a CCD camera to get the projection image of the torsion fiber, which is a direct and no-contact measurement. Furthermore, the relative position change of the torsion fiber can also be monitored during the experiment. In our experiment, the alignment between the fiber and the center of the turntable has been operated as an example. Our result reaches the accuracy of several micrometers which is higher than the previous method.

Keywords:  torsion pendulum      alignment      CCD camera  
Received:  20 March 2020      Revised:  27 April 2020      Accepted manuscript online: 
PACS:  04.80.Cc (Experimental tests of gravitational theories)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11305057).

Corresponding Authors:  Qing-Lan Wang     E-mail:  qinglanwang@126.com

Cite this article: 

Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚) New measuring method of fiber alignment in precision torsion pendulum experiments 2020 Chin. Phys. B 29 080401

[1] Adelberger E G, Gundlach J H, Heckel B R, Hoedl S and Schlamminger S 2009 Prog. Particle Nucl. Phys. 62 102
[2] Lee J G, Adelberger E G, Cook T S, Fleischer S M and Heckel B R 2020 Phys. Rev. Lett. 124 101101
[3] Tan W H, Du A B, Dong W C, Yang S Q, Shao C G, Guan S G, Wang Q L, Zhan B F, Luo P S, Tu L C and Luo J 2020 Phys. Rev. Lett. 124 051301
[4] Schlamminger S, Choi K Y, Wagner T A, Gundlach J H and Adelberger E G 2008 Phys. Rev. Lett. 100 041101
[5] Xu J H, Shao C G, Luo J, Liu Q, Zhu L and Zhao H H 2017 Chin. Phys. B 26 080401
[6] Zhu L, Liu Q, Zhao H H, Gong Q L, Yang S Q, Luo P S, Shao C G, Wang Q L, Tu L C and Luo J 2018 Phys. Rev. Lett. 121 261101
[7] Quinn T 2000 Nature 408 919
[8] Rothleitner C and Schlamminger S 2017 Rev. Sci. Instrum. 88 111101
[9] Li Q, Xue C, Liu J P, Wu J F, Yang S Q, Shao C G, Quan L D, Tan W H, Tu L C, Liu Q, Xu H, Liu L X, Wang Q L, Hu Z K, Zhou Z B, Luo P S, Wu S C, Milyukov V and Luo J 2018 Nature 560 582
[10] Bassan M, Cavalleri A, Laurentis M, Marchi F D, Rosa R D, Fiore L D, Dolesi R, Finetti N, Garufi, Grado A, Hueller M, Marconi L, Milano L, Pucacco G, Stanga R, Visco M, Vitale S and Weber W J 2016 Phys. Rev. Lett. 116 051104
[11] Ciani G, Chilton A, Apple S, Olatunde T, Aitken M, Mueller G and Conklin J W 2017 Rev. Sci. Instrum. 88 064502
[12] Tu L C, Li Q, Wang Q L, Shao C G, Yang S Q, Liu L X, Liu Q and Luo J 2010 Phys. Rev. D 82 022001
[13] Ciani G 2008 Free-fall of LISA Test Masses:a new torsion pendulum to test translational acceleration, Ph.D. Dissertation (Trento:University of Trento)
[14] Huarcaya V, Apelbaum G, Haendchen V, Wang Q, Heinzel G and Mehment M 2020 Class. Quantum Grav. 37 025004
[15] Kapner D J 2005 A Short-Range of Newton's Gravitational Invers-Square Law, Ph.D. Dissertation (Seattle:University of Washington)
[16] Wagner T A 2013 Rotating Torsion Balance Tests of the Weak Equivalence Principle, Ph.D. Dissertation (Seattle:University of Washington)
[17] Nityananda R 2015 Resonance 20 389
[18] Blackledge J M 2005 Digital Image Processing (Chichester:West Sussex)
[19] Born M and Wolf E 1999 Principles of Optics, 7th edn. (Cambridge:Cambridge University Press)
[20] Biswas R and Sil J 2012 Procedia Technology 4 820
[21] Gu J, Pan Y and Wang H 2015 Optik 126 2974
[22] Canny J 1986 IEEE Trans. Pattern Anal. Machine Intell. 6 679
[23] Ruslau M F V, Pratama R A, Nurhayati and Asmal S 2019 Earth and Environmental Science 343 012198
[24] Liu Q 2009 The precision measurement of Newtonian gravitational constant G by using double spherical source masses with the time-of-swing method, Ph.D. Dissertation (Wuhan:Huazhong University of Science & Technology) (in Chinese)
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[5] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[6] Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2022, 31(10): 103301.
[7] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[8] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[9] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[10] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[11] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[12] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[13] Tuning the alignment of pentacene on copper substrate by annealing-assistant surface functionalization
Qiao-Jun Cao(曹巧君), Shuang Wen(温爽), Hai-Peng Xie(谢海鹏), Bi-Yun Shi(施碧云), Qun Wang(王群), Cong-Rong Lu(卢从蓉), Yongli Gao(高永利), Wei-Dong Dou(窦卫东). Chin. Phys. B, 2020, 29(7): 076801.
[14] Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation
Zhen-Wu Jiang(姜振武), Shou-Shuai Gao(高守帅), Si-Yu Wang(王思宇), Dong-Xiao Wang(王东潇), Peng Gao(高鹏), Qiang Sun(孙强), Zhi-Qiang Zhou(周志强), Wei Liu(刘玮), Yun Sun(孙云), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(4): 048801.
[15] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
No Suggested Reading articles found!