CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Tuning the alignment of pentacene on copper substrate by annealing-assistant surface functionalization |
Qiao-Jun Cao(曹巧君)1, Shuang Wen(温爽)1, Hai-Peng Xie(谢海鹏)2, Bi-Yun Shi(施碧云)1, Qun Wang(王群)1, Cong-Rong Lu(卢从蓉)1, Yongli Gao(高永利)3, Wei-Dong Dou(窦卫东)1 |
1 Laboratory of Low-dimensional Carbon Materials and Department of Physics, Shaoxing University, Shaoxing 312000, China; 2 Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China; 3 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA |
|
|
Abstract Controlling the alignment and packing structure of organic molecules on solid substrate surfaces at molecule level is essential to develop high-performance organic thin film (OTF) devices. Pentacene, which is a typical p-type semiconductor material usually adopts lying-down geometry on metal substrates owning to π-d coupling between pentacene and metal substrates. However, in this study, we found that pentacene molecules can be adsorbed on an anneal-treated Cu (111) surface with their long axis perpendicular to substrate surface. Highly ordered single-layer pentacene film with stand-up molecular geometry was achieved on this substrate. It was found that the functionalization of Cu surface with C=O groups due to annealing treatment should be accounted for standing-up geometry of pentacene on Cu substrate. This observation shed light on the tuning of the alignment and packing structure of organic molecules.
|
Received: 15 February 2020
Revised: 05 April 2020
Accepted manuscript online:
|
PACS:
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY19F040005) and the National Natural Science Foundation of China (Grant Nos. 61474077 and 51802355). |
Corresponding Authors:
Wei-Dong Dou
E-mail: phyth@usx.edu.cn
|
Cite this article:
Qiao-Jun Cao(曹巧君), Shuang Wen(温爽), Hai-Peng Xie(谢海鹏), Bi-Yun Shi(施碧云), Qun Wang(王群), Cong-Rong Lu(卢从蓉), Yongli Gao(高永利), Wei-Dong Dou(窦卫东) Tuning the alignment of pentacene on copper substrate by annealing-assistant surface functionalization 2020 Chin. Phys. B 29 076801
|
[1] |
Lunt R R, Benziger J B and Forrest S R 2010 Adv. Mater. 22 1233
|
[2] |
Park S K, Jackson T N, Anthony J E and Mourey D A 2007 Appl. Phys. Lett. 91 063514
|
[3] |
Dimitrakopoulos C D and Malenfant P R L 2002 Adv. Mater. 14 99
|
[4] |
Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T and Adachi C 2014 Nat. Commun. 5 4016
|
[5] |
Han T H, Lee Y, Choi M R, Woo S H, Bae S H, Hong B H, Ahn J H and Lee T W 2012 Nat. Photon. 6 105
|
[6] |
Kim K H, Liao J L, Lee S W, Sim B, Moon C K, Lee G H, Kim H J, Chi Y and Kim J J 2016 Adv. Mater. 28 2526
|
[7] |
Uhrich C, Schueppel R, Petrich A, Pfeiffer M, Leo K, Brier E, Kilickiran P and Baeuerle P 2007 Adv. Funct. Mater. 17 2991
|
[8] |
Wang K, Liu C, Meng T, Yi C and Gong X 2016 Chem. Soc. Rev. 45 2937
|
[9] |
Hains A W, Liang Z, Woodhouse M A and Gregg B A 2010 Chem. Rev. 110 6689
|
[10] |
Ju H, Knesting K M, Zhang W, Pan X, Wang C H, Yang Y W, Ginger D S and Zhu J 2016 ACS Appl. Mater. Inter. 8 2125
|
[11] |
Han J and Wang J 2019 Chin. Phys. B 28 017103
|
[12] |
Zhang Y, Qiao J, Gao S, et al. 2016 Phys. Rev. Lett. 116 016602
|
[13] |
He X, Zhu G, Yang J, Chang H, Meng Q, Zhao H, Zhou X, Yue S, Wang Z, Shi J, Gu L, Yan D and Weng Y 2015 Sci. Rep. 5 17076
|
[14] |
Zacher D, Shekhah O, Woll C and Fischer R A 2009 Chem. Soc. Rev. 38 1418
|
[15] |
Kroger I, Stadtmuller B, Stadler C, Ziroff J, Kochler M, Stahl A, Pollinger F, Lee T L, Zegenhagen J, Reinert F and Kumpf C 2010 New J. Phys. 12 083038
|
[16] |
Bischoff F, Seufert K, Auwarter W, et al. 2013 ACS Nano 7 3139
|
[17] |
Xiao K, Deng W, Keum J K, et al. 2013 J. Am. Chem. Soc. 135 3680
|
[18] |
Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J and Dichtel W R 2011 Science 332 228
|
[19] |
Kowarik S, Gerlach A, Hinderhofer A, Milita S, Borgatti F, Zontone F, Suzuki T, Biscarini F and Schreiber F 2008 Phys. Stat. Sol. 2 120
|
[20] |
Ruiz R, Choudhary D, Nickel B, Toccoli T, Chang K C, Mayer A C, Clancy P, Blakely J M, Headrick R L, Iannotta S and Malliaras G G 2004 Chem. Mater. 16 4497
|
[21] |
Dou W, Huang S, Zhang R Q and Lee C S 2011 J. Chem. Phys. 134 094705
|
[22] |
Dou W, Zhu J, Liao Q, Zhang H, He P and Bao S 2008 J. Chem. Phys. 128 244706
|
[23] |
Cheng Z H, Gao L, Deng Z T, Liu Q, Jiang N, Lin X, He X B, Du S X and Gao H J 2007 J. Phys. Chem. C 111 2656
|
[24] |
Jiang Y H, Xiao W D, Liu L W, Zhang L Z, Lian J C, Yang K, Du S X and Gao H J 2011 J. Phys. Chem. C 115 21750
|
[25] |
Oyedele A D, Rouleau C M, Geohegan D B and Xiao K 2018 Carbon 131 246
|
[26] |
Lee W H, Park J, Sim S H, Lim S, Kim K S, Hong B H and Cho K 2011 J. Am. Chem. Soc. 133 4447
|
[27] |
Ling X, Fang W, Lee Y H, Araujo P T, Zhang X J, Rodriguez-Nieva F, Lin Y, Zhang J, Kong J and Dresselhaus M S 2014 Nano Lett. 14 3033
|
[28] |
Ye W G, Liu D, Peng X F and Dou W D 2013 Chin. Phys. B 22 117301
|
[29] |
Koini M, Haber T, Werzer O, Berkebile S, Koller G, Oehzelt M, Ramsey M G and Resel R 2008 Thin Solid Films 517 483
|
[30] |
Eremtchenko M, Temirov R, Bauer D, Schaefer J A and Tautz F S 2005 Phys. Rev. B 72 115430
|
[31] |
Dou W D and Lee C S 2014 Appl. Phys. Lett. 105 223110
|
[32] |
Cao Q J, Shi B Y, Dou W D, Tang J X and Mao H Y 2018 Carbon 138 458
|
[33] |
Shi B Y and Dou W D 2017 Thin Solid Films 636 723
|
[34] |
Götzen J, Käfer D, Wöll C and Witte G 2010 Phys. Rev. B 81 085440
|
[35] |
Seto K and Furukawa Y 2012 J. Raman Spectrosc. 43 2015
|
[36] |
Zhang L S, Roy S S, Hamers R J, Arnold M S and Andrew T L 2015 J. Phys. Chem. C 119 45
|
[37] |
Girlando A, Masino M, Brillante A, Toccoli T and Iannotta S 2016 Crystals 6 41
|
[38] |
Siegrist T, Kloc C, Schon J H, Batlogg B, Haddon R C, Berg S and Thomas G A 2001 Angew. Chem.-Int. Edit. 40 1732
|
[39] |
Dimitrakopoulos C D, Brown A R and Pomp A 1996 J. Appl. Phys. 80 2501
|
[40] |
Bouchoms I P M, Schoonveld W A, Vrijmoeth J and Klapwijk T M 1999 Synth. Met. 104 175
|
[41] |
Kafer D, Ruppel L and Witte G 2007 Phys. Rev. B 75 085309
|
[42] |
Guo J, Mo Y, Kaxiras E, Zhang Z and Weitering H H 2006 Phys. Rev. B 73 3405
|
[43] |
Lin L, Zhang J C, Su H S, ηl 2019 Nat. Commun. 10 1912
|
[44] |
Robertson J 1986 Adv. Phys. 35 317
|
[45] |
Khaliullin R Z, Eshet H, Kühne T D, Behler J and Parrinello M 2011 Nat. Mater. 10 693
|
[46] |
Li X, Cai W, Colombo L and Ruoff R S 2009 Nano Lett. 9 4268
|
[47] |
Deman A L, Eroul M, Lallemann D, Phaner-Goutorbe M, Lang P and Tardy J 2008 J. Non-Cryst. Solids 354 1598
|
[48] |
Yang H, Huang L, Sun K, Niu K, Cui Z, Zhang H, Wang Z, Yan D and Chi L 2017 J. Phys. Chem. C 121 25043
|
[49] |
Choudhary D, Clancy P, Shetty R and Escobedo F 2006 Adv. Funct. Mater. 16 1768
|
[50] |
Cao Q J, Shi B Y, Dou W D, Tang J X and Mao H Y 2018 Carbon 138 458
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|