Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 048301    DOI: 10.1088/1674-1056/28/4/048301
Special Issue: TOPICAL REVIEW — Fundamental research under high magnetic fields
TOPICAL REVIEW—Fundamental research under high magnetic fields Prev   Next  

Orientation and alignment during materials processing under high magnetic fields

Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫)
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Ferrometallurgy, Shanghai University, Shanghai 200444, China
Abstract  

The characteristics of lattice structures can make crystal possess distinct anisotropic features, such as the varying magnetism in different crystal orientations and different directions. The anisotropic magnetism can also cause the free energy to vary in different orientations of crystal in a magnetic field (magnetic anisotropy energy). Magneto-anisotropy can make the crystal rotate by the magnetic force moment on the crystal with the easy axis towards the direction of the magnetic field, and can also promote the preferential growth along a certain crystal direction at the lowest energy state. By solidification, vapor-deposition, heat treatment, slip casting and electrodeposition under magnetic field, the crystal structure with high grain orientation is obtained in a variety of binary eutectics, peritectic alloys, multicomponent alloys and high temperature superconducting materials. This makes it possible to fabricate texture-functional material by using high magnetic field and magneto-crystalline anisotropy of crystal. The purpose of this article is to review some recent progress of the orientation and alignment in material processing under a high magnetic field.

Keywords:  high magnetic field      orientation      alignment  
Received:  04 December 2018      Revised:  22 January 2019      Accepted manuscript online: 
PACS:  83.60.Np (Effects of electric and magnetic fields)  
  74.25.N- (Response to electromagnetic fields)  
  83.50.Uv (Material processing (extension, molding, etc.))  
  81.30.Fb (Solidification)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. U1560202, 51690162, and 51604172), the National Science and Technology Major Project “Aeroengine and Gas Turbine”, China (Grant No. 2017-VII-0008-0102), and the Shanghai Science and Technology Project, China (Grant No. 17JC1400602).

Corresponding Authors:  Zhong-Ming Ren, Jiang Wang     E-mail:  renzm2201@163.com;jiangwang417@163.com

Cite this article: 

Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫) Orientation and alignment during materials processing under high magnetic fields 2019 Chin. Phys. B 28 048301

[1] Wang Q, Liu T, Zhang C, Gao A, Li D and He J 2009 Sci. Technol. Adv. Mater. 10 1
[2] Han Y, Ban C, Guo S, Liu X, Ba Q and Cui J 2007 Mater. Lett. 61 983
[3] Rivoirard S, Barthem V M T S, Garcin T, Beaugnon E, De Miranda P E V and Givord D 2009 J. Phys.: Conf. Ser. 156 012009
[4] Legr, B A, Chateigner D, Perrier De La Bathie R and Tournier R 1998 J. Alloys Compd. 275-277 660-664
[5] Wang J, Li J, Hu R, Kou H and Beaugnon E 2015 Mater. Lett. 139 288
[6] Mikelson A E and Karklin Y K 1981 J. Cryst. Growth 52 524
[7] Li X, Ren Z, Fautrelle Y, Zhang Y and Esling C 2010 Acta Mater. 58 1403
[8] Li X, Ren Z, Sun Y, Wang J, Yu J and Ren W 2006 Acta Metall. Sin. 42 147
[9] Li X, Ren Z, Wang H, Deng K and Xu K 2006 Chin. J. Nonferrous Met. 16 476
[10] Zhang W and Dou Y 2009 Mater. Mech. Eng. 33 18
[11] Savitsky E M, Torchinova R S and Turanov S A 1981 J. Cryst. Growth 52 519
[12] Yamguchi M and Tanimoto Y 2006 Magneto-Science Magnetic Field Effects on Materials: Fundamentals and Applications (Springer)
[13] de Rango P, Lees M, Lejay P, Sulpice A, Tournier R, Ingold M, P Germl M P 1991 Nature 349 770
[14] Akio Katsuki, Ryoko Tokunaga S W and Y T 1996 Chem. Lett. 607-608
[15] Morikawa H, Sassa K and Asai S 1998 Mater. Trans. JIM 39 814
[16] Tahashi M, Ishihara M, Sassa K and Asai S 2003 Mater. Trans. 44 285
[17] Shimotomai M and Maruta K 2000 Scr. Mater. 42 499
[18] Wang H, Ren Z, Deng K and Xu K 2002 Acta Metall. Sin. 38 41
[19] Wang H, Ren Z, Deng K and Xu K 2002 Chin. J. Nonferrous Met. 12 556
[20] Wang H, Zhong-Ming R, Li X, Li W, Deng K and Xu K 2003 Trans. Nonferrous Met. Soc. Chin. 13 1405
[21] Zhang B, Ren Z, Wang H, Li X and Zhuang Y 2004 Acta Metall. Sin. 40 604
[22] Li X, Ren Z, Wang H, Li W, Deng K and Zhuang Y 2004 Acta Metall. Sin. 40 40
[23] Li X, Ren Z, Yu J, Wang H and Deng K 2005 Acta Metall. Sin. 41 685
[24] Li X, Ren Z, Deng K, Zhuang Y and Xu K 2005 Acta Metall. Sin. 41 588
[25] Wang E, Zuo X, Zhang L and He J 2008 Sprcial Casting & Nonferrpis Aalloys, Vol. 04 pp. 478-481
[26] Zhong Y, Wang J and Zheng T X 2012 Journal of Iron Steel Research, International pp. 283-285
[27] Zheng T, Zhong Y, Lei Z, Ren W, Ren Z, Wang H, Wang Q, Debray F, Beaugnon E and Fautrelle Y 2015 Mater. Lett. 140 68
[28] Song J, Zhao X, Wang S, Gong M and Zuo L 2008 Acta Metall. Sin. 44 1305
[29] Gong M, Zhao X, Wang S and Zuo L 2008 Acta Metall. Sin. 44 615
[30] Liu Y, Liu T, Wang Q, Wang H, Wang L and He J 2013 Acta Metall. Sin. 49 1148
[31] Gui L, Zhong Y, Fu X, Lei Z and Ren Z 2007 Acta Metall. Sin. 43 529
[32] Ren S, Ren Z and Ren W 2010 J. Vac. Sci. Technol. 30 430
[33] Li G, Wang H, Wang Q, Zhao Y, Wang Z, Du J and Ma Y 2015 Nanoscale Res. Lett. 10 1
[34] Huang C, Liu L, Fang J, Zhang W, Wang K, Gao P and Xu F 2016 Acta Phys. Sin. 65 156101 (in Chinese)
[35] Wang L, Ma Y, Wang D, Wang J, Satoshi A and Kazuo W 2010 Chin. J. Low Temp. Phys. 32 127
[36] Sun Z Q, Zhu X W, Li M S, Zhou Y C and Sakka Y 2008 J. Am. Ceram. Soc. 91 2521
[37] Ni D, Zhang G, Kan Y and Sakka Y 2009 Scr. Mater. 60 615
[38] Li W, Sun Y, Kou H, Chen M, Shi Y, Feng X, Pan Y and Guo J 2014 Ceram. Int. 40 10317
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[6] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[7] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[8] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[9] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[10] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[11] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[12] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[13] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[14] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[15] Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2022, 31(10): 103301.
No Suggested Reading articles found!