Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 103301    DOI: 10.1088/1674-1056/ac6eeb
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse

Qi-Yuan Cheng(程起元)1,2,3,4, Yu-Zhi Song(宋玉志)2, Deng-Wang Li(李登旺)2,3, Zhi-Ping Liu(刘治平)4, and Qing-Tian Meng(孟庆田)2,†
1. Medical Engineering Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
2. School of Physics and Electronics, Shandong Normal University, Jinan 250358, China;
3. Shandong Laibo Biotechnology Co., Ltd., Jinan 250101, China;
4. School of Control Science and Engineering, Shandong University, Jinan 250061, China
Abstract  The field-free alignment of molecule ClCN is investigated by using a terahertz few-cycle pulse (THz FCP) based on the time-dependent density matrix theory. It is shown that a high degree of molecular alignment can be obtained by changing the matching number of the THz FCPs in the adiabatic regime and the non-adiabatic regime. The matching number can affect both the maximum value of the alignment and the time at which it is achieved. It is also found that a higher degree of alignment can be achieved by using the THz FCP at lower intensity and there exists an optimal threshold of molecular alignment with the increase of the field amplitude. Also found is the frequency sensitive region in which the degree of maximum alignment can be enhanced greatly by modulating the center frequencies of different THz FCPs. The investigation demonstrates that comparing with a THz single-cycle pulse, a better result of the field-free alignment can be created by a THz FCP at a constant rotational temperature of molecule.
Keywords:  molecular alignment      few-cycle terahertz pulse      density matrix theory  
Received:  03 April 2022      Revised:  07 May 2022      Accepted manuscript online: 
PACS:  33.80.-b (Photon interactions with molecules)  
  33.15.Vb (Correlation times in molecular dynamics)  
  33.80.Wz (Other multiphoton processes)  
  33.15.Kr (Electric and magnetic moments (and derivatives), polarizability, and magnetic susceptibility)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274265 and 11874241) and the Taishan Scholar Project of Shandong Province, China.
Corresponding Authors:  Qing-Tian Meng     E-mail:  qtmeng@sdnu.edu.cn

Cite this article: 

Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田) Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse 2022 Chin. Phys. B 31 103301

[1] Zeng G P, Zhong F J, Wu C Y, Jiang H B and Gong Q H 2009 Laser Phys. 19 1691
[2] Leibscher M, Averbukh I S and Rabitz H 2003 Phys. Rev. Lett. 90 213001
[3] Chatterley A S, Schouder C, Christiansen L, Shepperson B, Rasmussen M H and Stapelfeldt H 2019 Nat. Commun. 10 133
[4] Floß J and Brumer P 2017 J. Chem. Phys. 146 124313
[5] Ospelkaus S, Ni K K, Wang D, Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 327 853
[6] Spence J C H, Schmidt K, Wu J S, Hembree G, Weierstall U, Doak B and Fromme P 2005 Acta Crystallogr. Sect. A 61 237
[7] Peterson E R, Buth C, Arms D A, Dunford R W, Kanter E P, Krassig B, Landahl E C, Pratt S T, Santra R, Southworth S H and Young L 2008 Appl. Phys. Lett. 92 094106
[8] Ramakrishna S and Seideman T 2005 Phys. Rev. Lett. 95 113001
[9] Ramakrishna S and Seideman T 2006 J. Chem. Phys. 124 034101
[10] Kanai T, Minemoto S and Sakai H 2007 Phys. Rev. Lett. 98 053002
[11] Bian X B and Bandrauk A D 2012 Phys. Rev. A 86 053417
[12] Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X and Cheng Y 2021 Chin. Phys. Lett. 38 123301
[13] Hu J W and Han Y C 2021 J. Chem. Phys. 155 064108
[14] Kallush S, Carini J L, Gould P L and Kosloff R 2017 Phys. Rev. A 96 053613
[15] Wang B B, Han Y C and Cong S L 2015 J. Chem. Phys. 143 094303
[16] Normand D, Lompré L A and Cornaggia C 1992 J. Phy. B: At. Mol. Opt. Phys. 25 L497
[17] Friedrich B and Herschbach D 1995 Phys. Rev. Lett. 74 4623
[18] Rosca-Pruna F and Vrakking M J J 2001 Phys. Rev. Lett. 87 153902
[19] Torres R, Nalda R de and Marangos J P 2005 Phys. Rev. A 72 023420
[20] Loriot V, Tzallas P, Benis E P, Hertz E, Lavorel B, Charalambidis D and Faucher O 2007 J. Phys. B: At. Mol. Opt. Phys. 40 2503
[21] Xu S, Yao Y, Lu C, Ding J, Jia T, Zhang S Aand Sun Z 2014 Phys. Rev. A 89 053420
[22] Cheng Q Y, Song Y Z and Meng Q T 2021 Mol. Phys. 119 e1859147
[23] Muramatsu M, Hita M, Minemoto S and Sakai H 2009 Phys. Rev. A 79 011403
[24] Zhang S A, Shi J, Zhang H, Jia T, Wang Z and Sun Z R 2011 Phys. Rev. A 83 023416
[25] Hu S L, Zhao Z X and Shi T Y 2013 Chin. Phys. Lett. 30 103103
[26] Qin C C, Tang Y, Wang Y M and Zhang B 2012 Phys. Rev. A 85 053415
[27] Matos-Abiague A and Berakdar J 2003 Phys. Rev. A 68 063411
[28] Fleischer S, Zhou Y, Field R W and Nelson K A 2011 Phys. Rev. Lett. 107 163603
[29] Cheng Q Y, Liu J S, Zhou X C, Song Y Z and Meng Q T 2019 Europhys. Lett. 125 33001
[30] Shu C C, Yuan K J, Hu W H and Cong S L 2010 J. Chem. Phys. 132 244311
[31] Liu Y, Li J, Yu J and Cong S L 2013 Laser Phys. Lett. 10 076001
[32] Sonoda K, Iwasaki A, Yamanouchi K and Hasegawa H 2018 Chem. Phys. Lett. 693 114
[33] Liu J S, Cheng Q Y, Yue D G, Zhou X C and Meng Q T 2018 Chin. Phys. B 27 033301
[34] Machholm M and Henriksen N E 2001 Phys. Rev. Lett. 87 193001
[35] Dion C M, Keller A and Atabek O 2001 Eur. Phys. J. D 14 249
[36] Zhang X M, Li J, Yu J and Cong S L 2016 Commun. Comput. Phys. 20 689
[37] Shu C C and Henriksen N E 2013 Phys. Rev. A 87 013408
[38] Kitano K, Ishii N, Kanda N, Matsumoto Y, Kanai T, Kuwata-Gonokami M and Itatani J 2013 Phys. Rev. A 88 061405
[39] You D and Bucksbaum P H 1997 J. Opt. Soc. Am. B 14 1651
[40] Kitano K, Ishii N and Itatani J 2011 Phys. Rev. A 84 053408
[41] Qin C C, Liu Y Z, Zhang X Z and Liu Y F 2013 Chin. Phys. Lett. 30 023301
[42] Dang H P, Wang S, Zhan W S, Zai J B and Han X 2015 Chem. Phys. 461 81
[43] Cheng Q Y, Liu J S, Zhou X C, Yue D G and Meng Q T 2018 J. Phys. B: At. Mol. Opt. Phys. 51 065401
[44] Maroulis G and Pouchan C 1997 Chem. Phys. 215 67
[45] Lafferty W J and Lide D R 1967 J. Mol. Spectrosc. 23 94
[46] Sugny D, Keller A, Atabek O, Daems D, Dion C M, Guérin S and Jauslin H R 2004 Phys. Rev. A 69 033402
[1] Tuning the alignment of pentacene on copper substrate by annealing-assistant surface functionalization
Qiao-Jun Cao(曹巧君), Shuang Wen(温爽), Hai-Peng Xie(谢海鹏), Bi-Yun Shi(施碧云), Qun Wang(王群), Cong-Rong Lu(卢从蓉), Yongli Gao(高永利), Wei-Dong Dou(窦卫东). Chin. Phys. B, 2020, 29(7): 076801.
[2] Spectral modulation of third-harmonic generation by molecular alignment and preformed plasma
Min Li(李敏), An-Yuan Li(李安原), Bo-Qu He(何泊衢), Shuai Yuan(袁帅), He-Ping Zeng(曾和平). Chin. Phys. B, 2016, 25(8): 084209.
[3] Nonsequential double ionization of diatomic molecules by elliptically polarized laser pulses
Tong Ai-Hong (童爱红), Liu Dan (刘丹), Feng Guo-Qiang (冯国强). Chin. Phys. B, 2014, 23(10): 103302.
[4] Low temperature enhancement of alignment-induced spectral broadening of femtosecond laser pulses
Wang Fei (王翡), Jiang Hong-Bing (蒋红兵), Gong Qi-Huang (龚旗煌). Chin. Phys. B, 2014, 23(1): 014201.
[5] Angular distributions of CH3I fragment ions under the irradiation of single pulse and trains of ultrashort laser pulses
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Sun Chang-Kai (孙长凯), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(1): 013302.
[6] Effects of aligning pulse duration on the degree and the slope of nitrogen field-free alignment
Wang Fei(王翡), Jiang Hong-Bing(蒋红兵), and Gong Qi-Huang(龚旗煌) . Chin. Phys. B, 2012, 21(5): 054212.
[7] Intraband dynamics and terahertz emission in biased semiconductor superlattices coupled to double far-infrared pulses
Li Min(李敏) and Mi Xian-Wu(米贤武) . Chin. Phys. B, 2009, 18(12): 5534-5538.
No Suggested Reading articles found!