|
|
Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse |
Qi-Yuan Cheng(程起元)1,2,3,4, Yu-Zhi Song(宋玉志)2, Deng-Wang Li(李登旺)2,3, Zhi-Ping Liu(刘治平)4, and Qing-Tian Meng(孟庆田)2,† |
1. Medical Engineering Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; 2. School of Physics and Electronics, Shandong Normal University, Jinan 250358, China; 3. Shandong Laibo Biotechnology Co., Ltd., Jinan 250101, China; 4. School of Control Science and Engineering, Shandong University, Jinan 250061, China |
|
|
Abstract The field-free alignment of molecule ClCN is investigated by using a terahertz few-cycle pulse (THz FCP) based on the time-dependent density matrix theory. It is shown that a high degree of molecular alignment can be obtained by changing the matching number of the THz FCPs in the adiabatic regime and the non-adiabatic regime. The matching number can affect both the maximum value of the alignment and the time at which it is achieved. It is also found that a higher degree of alignment can be achieved by using the THz FCP at lower intensity and there exists an optimal threshold of molecular alignment with the increase of the field amplitude. Also found is the frequency sensitive region in which the degree of maximum alignment can be enhanced greatly by modulating the center frequencies of different THz FCPs. The investigation demonstrates that comparing with a THz single-cycle pulse, a better result of the field-free alignment can be created by a THz FCP at a constant rotational temperature of molecule.
|
Received: 03 April 2022
Revised: 07 May 2022
Accepted manuscript online:
|
PACS:
|
33.80.-b
|
(Photon interactions with molecules)
|
|
33.15.Vb
|
(Correlation times in molecular dynamics)
|
|
33.80.Wz
|
(Other multiphoton processes)
|
|
33.15.Kr
|
(Electric and magnetic moments (and derivatives), polarizability, and magnetic susceptibility)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274265 and 11874241) and the Taishan Scholar Project of Shandong Province, China. |
Corresponding Authors:
Qing-Tian Meng
E-mail: qtmeng@sdnu.edu.cn
|
Cite this article:
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田) Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse 2022 Chin. Phys. B 31 103301
|
[1] Zeng G P, Zhong F J, Wu C Y, Jiang H B and Gong Q H 2009 Laser Phys. 19 1691 [2] Leibscher M, Averbukh I S and Rabitz H 2003 Phys. Rev. Lett. 90 213001 [3] Chatterley A S, Schouder C, Christiansen L, Shepperson B, Rasmussen M H and Stapelfeldt H 2019 Nat. Commun. 10 133 [4] Floß J and Brumer P 2017 J. Chem. Phys. 146 124313 [5] Ospelkaus S, Ni K K, Wang D, Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 327 853 [6] Spence J C H, Schmidt K, Wu J S, Hembree G, Weierstall U, Doak B and Fromme P 2005 Acta Crystallogr. Sect. A 61 237 [7] Peterson E R, Buth C, Arms D A, Dunford R W, Kanter E P, Krassig B, Landahl E C, Pratt S T, Santra R, Southworth S H and Young L 2008 Appl. Phys. Lett. 92 094106 [8] Ramakrishna S and Seideman T 2005 Phys. Rev. Lett. 95 113001 [9] Ramakrishna S and Seideman T 2006 J. Chem. Phys. 124 034101 [10] Kanai T, Minemoto S and Sakai H 2007 Phys. Rev. Lett. 98 053002 [11] Bian X B and Bandrauk A D 2012 Phys. Rev. A 86 053417 [12] Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X and Cheng Y 2021 Chin. Phys. Lett. 38 123301 [13] Hu J W and Han Y C 2021 J. Chem. Phys. 155 064108 [14] Kallush S, Carini J L, Gould P L and Kosloff R 2017 Phys. Rev. A 96 053613 [15] Wang B B, Han Y C and Cong S L 2015 J. Chem. Phys. 143 094303 [16] Normand D, Lompré L A and Cornaggia C 1992 J. Phy. B: At. Mol. Opt. Phys. 25 L497 [17] Friedrich B and Herschbach D 1995 Phys. Rev. Lett. 74 4623 [18] Rosca-Pruna F and Vrakking M J J 2001 Phys. Rev. Lett. 87 153902 [19] Torres R, Nalda R de and Marangos J P 2005 Phys. Rev. A 72 023420 [20] Loriot V, Tzallas P, Benis E P, Hertz E, Lavorel B, Charalambidis D and Faucher O 2007 J. Phys. B: At. Mol. Opt. Phys. 40 2503 [21] Xu S, Yao Y, Lu C, Ding J, Jia T, Zhang S Aand Sun Z 2014 Phys. Rev. A 89 053420 [22] Cheng Q Y, Song Y Z and Meng Q T 2021 Mol. Phys. 119 e1859147 [23] Muramatsu M, Hita M, Minemoto S and Sakai H 2009 Phys. Rev. A 79 011403 [24] Zhang S A, Shi J, Zhang H, Jia T, Wang Z and Sun Z R 2011 Phys. Rev. A 83 023416 [25] Hu S L, Zhao Z X and Shi T Y 2013 Chin. Phys. Lett. 30 103103 [26] Qin C C, Tang Y, Wang Y M and Zhang B 2012 Phys. Rev. A 85 053415 [27] Matos-Abiague A and Berakdar J 2003 Phys. Rev. A 68 063411 [28] Fleischer S, Zhou Y, Field R W and Nelson K A 2011 Phys. Rev. Lett. 107 163603 [29] Cheng Q Y, Liu J S, Zhou X C, Song Y Z and Meng Q T 2019 Europhys. Lett. 125 33001 [30] Shu C C, Yuan K J, Hu W H and Cong S L 2010 J. Chem. Phys. 132 244311 [31] Liu Y, Li J, Yu J and Cong S L 2013 Laser Phys. Lett. 10 076001 [32] Sonoda K, Iwasaki A, Yamanouchi K and Hasegawa H 2018 Chem. Phys. Lett. 693 114 [33] Liu J S, Cheng Q Y, Yue D G, Zhou X C and Meng Q T 2018 Chin. Phys. B 27 033301 [34] Machholm M and Henriksen N E 2001 Phys. Rev. Lett. 87 193001 [35] Dion C M, Keller A and Atabek O 2001 Eur. Phys. J. D 14 249 [36] Zhang X M, Li J, Yu J and Cong S L 2016 Commun. Comput. Phys. 20 689 [37] Shu C C and Henriksen N E 2013 Phys. Rev. A 87 013408 [38] Kitano K, Ishii N, Kanda N, Matsumoto Y, Kanai T, Kuwata-Gonokami M and Itatani J 2013 Phys. Rev. A 88 061405 [39] You D and Bucksbaum P H 1997 J. Opt. Soc. Am. B 14 1651 [40] Kitano K, Ishii N and Itatani J 2011 Phys. Rev. A 84 053408 [41] Qin C C, Liu Y Z, Zhang X Z and Liu Y F 2013 Chin. Phys. Lett. 30 023301 [42] Dang H P, Wang S, Zhan W S, Zai J B and Han X 2015 Chem. Phys. 461 81 [43] Cheng Q Y, Liu J S, Zhou X C, Yue D G and Meng Q T 2018 J. Phys. B: At. Mol. Opt. Phys. 51 065401 [44] Maroulis G and Pouchan C 1997 Chem. Phys. 215 67 [45] Lafferty W J and Lide D R 1967 J. Mol. Spectrosc. 23 94 [46] Sugny D, Keller A, Atabek O, Daems D, Dion C M, Guérin S and Jauslin H R 2004 Phys. Rev. A 69 033402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|