Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080501    DOI: 10.1088/1674-1056/ab9287
GENERAL Prev   Next  

Patterns of cross-correlation in time series: A case study of gait trails

Jia Song(宋佳), Tong-Feng Weng(翁同峰), Chang-Gui Gu(顾长贵), Hui-Jie Yang(杨会杰)
Business School, University of Shanghai for Science and Technology, Shanghai 200082, China
Abstract  

A complex system contains generally many elements that are networked by their couplings. The time series of output records of the system's dynamical process is subsequently a cooperative result of the couplings. Discovering the coupling structure stored in the time series is an essential task in time series analysis. However, in the currently used methods for time series analysis the structural information is merged completely by the procedure of statistical average. We propose a concept called mode network to preserve the structural information. Firstly, a time series is decomposed into intrinsic mode functions and residue by means of the empirical mode decomposition solution. The mode functions are employed to represent the contributions from different elements of the system. Each mode function is regarded as a mono-variate time series. All the mode functions form a multivariate time series. Secondly, the co-occurrences between all the mode functions are then used to construct a threshold network (mode network) to display the coupling structure. This method is illustrated by investigating gait time series. It is found that a walk trial can be separated into three stages. In the beginning stage, the residue component dominates the series, which is replaced by the mode function numbered M14 with peaks covering ~680 strides (~12 min) in the second stage. In the final stage more and more mode functions join into the backbone. The changes of coupling structure are mainly induced by the co-occurrent strengths of the mode functions numbered as M11, M12, M13, and M14, with peaks covering 200-700 strides. Hence, the mode network can display the rich and dynamical patterns of the coupling structure. This approach can be extended to investigate other complex systems such as the oil price and the stock market price series.

Keywords:  intrinsic mode function      mode network      gait time series  
Received:  01 February 2020      Revised:  08 May 2020      Accepted manuscript online: 
PACS:  05.45.Tp (Time series analysis)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11805128, 11875042, 11505114, and 10975099), the Program for Professor of Special Appointment (Orientational Scholar) at Shanghai Institutions of Higher Learning, China (Grant Nos. D-USST02 and QD2015016), and the Shanghai Project for Construction of Top Disciplines, China (Grant No. USST-SYS-01).

Corresponding Authors:  Hui-Jie Yang     E-mail:  hjyang@usst.edu.cn

Cite this article: 

Jia Song(宋佳), Tong-Feng Weng(翁同峰), Chang-Gui Gu(顾长贵), Hui-Jie Yang(杨会杰) Patterns of cross-correlation in time series: A case study of gait trails 2020 Chin. Phys. B 29 080501

[1] Box G E, Jenkins G M, Reinsel G C and Ljung G M 2015 Time Series Analysis:Forecasting and Control (Hoboken:John Wiley and Sons)
[2] Peng C, Hausdorff J and Goldberger A 2009 Fractal Mechanisms in Neuronal Control:Human Heartbeat and Gait Dynamics in Health and Disease (Cambridge:Cambridge University Press) pp. 66-96
[3] Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C and Liu H H 1998 Proc. Math. Phys. & Eng. Sci. 454 903
[4] Gao Z, Small M and Kurths J 2016 Europhys. Lett. 116 50001
[5] Yang Y, Yang H J 2008 Physica A 387 1381
[6] Hausdorff J M, Purdon P L, Peng C K, Ladin Z, Wei J Y and Goldberger A L 2001 Long-Term Recordings of Gait Dynamics, Physiobank Version:1.0.0
[7] Saleh M, Esa Y and Mohamed A 2018 Energies 11 1381
[8] Strogatz S H 2001 Nature 410 268
[9] Bashan A, Bartsch R P, Kantelhardt J W, Havlin S and Ivanov P C 2012 Nat. Commun. 3 702
[10] Newman M E J 2003 SIAM Rev. 45 167
[11] Marwan N, Donges J F, Zou Y, Donner R V and Kurths J 2009 Phys. Lett. A 373 4246
[12] Xu X, Zhang J and Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601
[13] Tumminello M, Aste T, Di Matteo T and Mantegna R N 2005 Proc. Natl. Acad. Sci. USA 102 10421
[14] Bence J R 1995 Ecology 76 628
[15] Hausdorff J M, Peng C K, Ladin Z, Wei J Y and Goldberger A L 1995 J. Appl. Physiol. 78 349
[16] Hausdorrf J M, Purdon P L, Peng C K, Ladin Z, Wei J Y and Goldberger A L 1996 J. Appl. Physiol. 80 1448
[17] Ashkenazy Y, Hausdorff J M, Ivanov P C and Stanley H E 2002 Physica A 316 662
[18] Ching E S C, Lai P Y and Leung C Y 2015 Phys. Rev. E 91 030801(R)
[19] Napoletani D and Sauer T D 2008 Phys. Rev. E 77 026103
[20] Zhou L, Qiu L, Gu C G and Yang H J 2018 Europhys. Lett. 121 48002
[21] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[22] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[23] Hausdorff J M, Lertratanakul A, Cudkowicz M E, Peterson A L, Kaliton D and Goldberger A L 2000 J. Appl. Physiol. 88 2045
[24] Ren H G, Yang Y, Gu C G, Weng T F and Yang H J 2018 IEEE Trans. Neur. Sys. Reh. 26 1765
[25] Zhang W Q, Qiu L, Xiao Q, Yang H J, Zhang Q J and Wang J Y 2012 Phys. Rev. E 86 056107
[26] Pan X, Hou L, Stephen M, Yang H J and Zhu C P 2014 PLoS ONE 9 e116128
[27] Qiu L, Yang T G, Yin Y H, Gu C G and Yang H J 2016 Phy. Rev. E 94 062201
[28] Yang Y, Qiu L, Yang T G, Hou L Y, Gu C G and Yang H J 2017 Chin. J. Phys. 55 2325
[29] Zeng W, Yuan C Z, Wang Q H, Liu F L and Wang Y 2019 Neural Netw. 111 64
[30] Wang W B, Zhang X D, Chang Y C, Wang X L, Wang Z, Chen X, Zheng L 2016 Chin. Phys. B 25 010202
[31] Zou Y, Donner R V, Marwan N, Donges J F and Kurths J 2019 Phys. Rep. 787 1
[32] Zhang J and Small M 2006 Phys. Rev. Lett. 96 238701
[33] Gao Z and Jin N D 2009 Phys. Rev. E 79 066303
[34] Donner R, Zou Y, Donges J, Marwan N and Kurths J 2010 New J. Phys. 12 033025
[35] Yu H T, Cai L H, Wu X Y, Wang J, Liu J, Zhang H 2019 Chin. Phys. B 28 048702
[36] Zhang M and Wang Y M 2020 Chin. Phys. B 29 048901
[37] McCullough M, Small M, Stemler T and Iu H C 2015 Chaos 25 053101
[38] Stephen M, Gu C G and Yang H J 2015 PLoS ONE 10 e0143015
[39] Stephen M, Gu C G and Yang H J 2016 Chaos 26 053107
[1] A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition
Fu Mao-Jing(符懋敬), Zhuang Jian-Jun(庄建军), Hou Feng-Zhen(侯凤贞), Zhan Qing-Bo(展庆波),Shao Yi(邵毅), and Ning Xin-Bao(宁新宝). Chin. Phys. B, 2010, 19(5): 058701.
No Suggested Reading articles found!