|
|
Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass |
Qi Hao(郝奇)1, Ji-Chao Qiao(乔吉超)1, E V Goncharova2, G V Afonin2, Min-Na Liu(刘敏娜)1, Yi-Ting Cheng(程怡婷)1, V A Khonik2 |
1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China;
2 Department of General Physics, Voronezh State Pedagogical University, Lenin Street 86, Voronezh 394043, Russia |
|
|
Abstract A relationship between thermal effects and relaxation of the high-frequency shear modulus upon heat treatment of bulk Zr48(Cu5/6Ag1/6)44Al8 metallic glass is found. This relationship is attributed to the relaxation of a interstitial-type defect system frozen-in from the melt upon glass production. Calorimetric data show that thermal effects occurring on heating include heat release below the glass transition temperature, heat absorption above it and heat release caused by crystallization. The equation derived within the Interstitialcy theory can be used to calculate the shear modulus relaxation using the calorimetric data. The obtained results are used to trace the defect concentration as functions of temperature and thermal prehistory.
|
Received: 08 April 2020
Revised: 08 May 2020
Accepted manuscript online:
|
PACS:
|
64.70.pe
|
(Metallic glasses)
|
|
07.20.Fw
|
(Calorimeters)
|
|
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51971178), the Astronautics Supporting Technology Foundation of China (Grant No. 2019-HT-XG), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JM-344), the Russian Science Foundation (Grant No. 20-62-46003), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102019ghxm007 and 3102017JC01003). |
Corresponding Authors:
Ji-Chao Qiao
E-mail: qjczy@nwpu.edu.cn
|
Cite this article:
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass 2020 Chin. Phys. B 29 086402
|
[1] |
Golding B, Bagley B G and Hsu F S L 1972 Phys. Rev. Lett. 29 68
|
[2] |
Wang W H 2012 Prog. Mater. Sci. 57 487
|
[3] |
Hou Z Y, Liu R S, Tian Z A and Wang J G 2011 Chin. Phys. B 20 66102
|
[4] |
Yang L and Guo G Q 2010 Chin. Phys. B 19 126101
|
[5] |
Qiao J C, Wang Q, Crespo D, Yang Y and Pelletier J M 2017 Chin. Phys. B 26 16402
|
[6] |
Schuh C A, Hufnagel T C and Ramamurty U 2007 Acta Mater. 55 4067
|
[7] |
Wang W H 2012 Nat. Mater 11 275
|
[8] |
Wagner H, Bedorf D, Küchemann S, Schwabe M, Zhang B, Arnold W and Samwer K 2011 Nat. Mater 10 439
|
[9] |
Rouxel T, Ji H, Hammouda T and Moréac A 2008 Phys. Rev. Lett. 100 225501
|
[10] |
Qiao J C, Yao Y, Pelletier J M and Keer L M 2016 Int. J. Plast 82 62
|
[11] |
Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y and Yang Y 2019 Prog. Mater. Sci. 104 250
|
[12] |
Granato A V 2014 Eur. Phys. J. B 87 18
|
[13] |
Holder J, Granato A V and Rehn L E 1974 Phys. Rev. Lett. 32 1054
|
[14] |
Makarov A S, Mitrofanov Y P, Afonin G V, Kobelev N P and Khonik V A 2019 Scr. Mater. 168 10
|
[15] |
Goncharova E V, Konchakov R A, Makarov A S, Kobelev N P and Khonik V A 2017 J. Phys.:Condens. Matter 29 305701
|
[16] |
Khonik V A and Kobelev N P 2019 Metals 9 605
|
[17] |
Afonin G V, Mitrofanov Y P, Kobelev N P, da Silva Pinto M W, Wilde G and Khonik V A 2019 Scr. Mater. 166 6
|
[18] |
Mitrofanov Y P, Makarov A S, Khonik V A, Granato A V, Joncich D M and Khonik S V 2012 Appl. Phys. Lett. 101 131903
|
[19] |
Mitrofanov Y P, Wang D P, Makarov A S, Wang W H and Khonik V A 2016 Sci. Rep. 6 23026
|
[20] |
Mitrofanov Y P, Afonin G V, Makarov A S, Kobelev N P and Khonik V A 2018 Intermetallics 101 116
|
[21] |
Duan Y J, Qiao J C, Crespo D, Goncharova E V, Makarov A S, Afonin G V and Khonik V A 2020 J. Alloys Compd. 830 154564
|
[22] |
Hirao M and Ogi H 2017 Electromagnetic Acoustic Transducers (Berlin:Springer)
|
[23] |
Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcik J, Franz H, Liu Y G, Cao Q P and Jiang J Z 2008 Acta Mater. 56 1785
|
[24] |
Makarov A S, Khonik V A, Wilde G, Mitrofanov Y P and Khonik S V 2014 Intermetallics 44 106
|
[25] |
Makarov A S, Mitrofanov Y P, Konchakov R A, Kobelev N P, Csach K, Qiao J C and Khonik V A 2019 J. NonCryst. Solids 521 119474
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|