CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
A high-pressure study of Cr3C2 by XRD and DFT |
Lun Xiong(熊伦)1, Qiang Li(李强)1, Cheng-Fu Yang(杨成福)1, Qing-Shuang Xie(谢清爽)1, Jun-Ran Zhang(张俊然)2,3 |
1 School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China; 2 Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The equation of state (EOS) of Cr3C2 at high pressure is studied by the synchrotron radiation x-ray diffraction (XRD) in a diamond anvil cell (DAC) at ambient temperature, and density functional theory (DFT). The XRD analysis shows that the orthorhombic structure is maintained to a maximum pressure of 44.5 GPa. The XRD data show that the bulk modulus is K0=292 (18) GPa with K0'=3.25(0.85). In addition, the high-pressure compression behavior of Cr3C2 is studied by first principles calculations. The obtained bulk modulus of Cr3C2 is 323 (1) GPa.
|
Received: 14 February 2020
Revised: 06 April 2020
Accepted manuscript online:
|
PACS:
|
64.30.Jk
|
(Equations of state of nonmetals)
|
|
64.60.-i
|
(General studies of phase transitions)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
Fund: Project supported by the Project of Ph. D. Special Research of Sichuan University of Arts and Science, China (Grant No. 2019BS006Z) and the Fund from the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N03 and KJCX2-SW-N20). |
Corresponding Authors:
Lun Xiong, Jun-Ran Zhang
E-mail: 1094129778@qq.com;zhangjunran@ihep.ac.cn
|
Cite this article:
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然) A high-pressure study of Cr3C2 by XRD and DFT 2020 Chin. Phys. B 29 086401
|
[1] |
Tomomatsu K and Matsushita J 1999 J. Adv. Sci. 11 83
|
[2] |
Reichl W and Hayek K 2004 J. Catal. 222 53
|
[3] |
Zhao H F, Zhu L H and Huang Q W 2005 Rare Met. Mater. Eng. 34 82
|
[4] |
Furukawa M, Sato M, Nakano O, Kitada T, Hiraishi H and Yamagami Y 1989 Nippon Tungsten Rev. 22 73
|
[5] |
Ma X, Tanihata K and Miyamoto Y 1992 J. Ceram. Soc. Jpn. 100 605
|
[6] |
Hirota K, Mitani K, Yoshinaka M and Yamaguchi O 2005 Mater. Sci. Eng. 399 154
|
[7] |
Min T, Gao Y, Li Y, Yang Y, Li R and Xie X J 2012 Rare Met. Mater. Eng. 22 2005
|
[8] |
Li Y F, Gao Y M, Xiao B, Mina T, Yanga Y, Ma S Q and Yi D W 2011 J. Alloys Compd. 509 5242
|
[9] |
Jiang C 2008 Appl. Phys. Lett. 92 041909
|
[10] |
Jiang B L, Kou Z L, Ma D J, Wang Y K, Li C X, Duan W R and Yang X H 2015 Adv. Mater. Res. 1120 1187
|
[11] |
Xiong L and Liu J 2018 Chin. Phys. B 27 036101
|
[12] |
Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
|
[13] |
Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Press. Res. 14 235
|
[14] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[15] |
Perdew E M, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[16] |
Birch F 1978 J. Geophys. Res. 83 1257
|
[17] |
Guemmaz M, Mosser A, Ahujab R and Johansson B 1999 Solid State Commun. 110 299
|
[18] |
Nino A, Tanaka A, Sugiyama S and Taimatsu H 2010 Mater. Trans. 51 1621
|
[19] |
Zhukov V P, Gubanov V A, Jepsen O, Christensen N E and Andersen O K 1988 J. Phys. Chem. Solids 49 841
|
[20] |
Chauhan M and Gupta D C 2013 Diam. Relat. Mater. 40 96
|
[21] |
Mecabih S, Amrane N, Nabi Z, Abbar B and Aourag H 2000 Physica A 285 392
|
[22] |
Jiao Z Y, Ma S H, Zhang X Z and Huang X F 2013 Europhys. Lett. 101 46002
|
[23] |
Singh A, Aynyas M, Sanyal S P 2009 Phase Transit. 82 576
|
[24] |
Ahuja R, Eriksson O, Wills J M and Johansson B 1996 Phys. Rev. B 53 3072
|
[25] |
Green D J 1998 An introduction to mechanical properties of ceramics (Cambridge:Cambridge University Press) p. 210
|
[26] |
Johnston I, Keller G, Rollins R, Spicklemire S 1996 Solid State Physics Simulations:the Consortium for Upper-Level Physics Software (New York:John Wiley)
|
[27] |
Yang Q, Lengauer W, Koch T, Scheerer M and Smid I 2000 J. Aollys Compd. 309 L5
|
[28] |
Brown H L, Kempter C P 1966 Phys. Stat. Sol. 18 K21
|
[29] |
Pugh S F 1954 Phil. Mag. 45 823
|
[30] |
Lu X G, Selleby M and Sundman B 2007 Acta Mater. 55 1215
|
[31] |
Rathod N, Gupta S K and Jha P K 2012 Phase Transit. 85 1060
|
[32] |
Lv Z, Hu H, Wu C, Cui S and Zhang G 2011 Physica B 406 2750
|
[33] |
Cheng D Y, Wang S Q and Ye H Q 2004 J. Aollys Compd. 377 221
|
[34] |
Hao A M, Zhou T J, Zhu Y, Zhang X Y and Liu R P 2011 Mater. Chem. Phys. 129 99
|
[35] |
Fu H Z, Peng W M and Gao T 2009 Mater. Chem. Phys. 115 789
|
[36] |
Yang X Y, Lu Y, Zheng F W and Zhang P 2015 Chin. Phys. B 24 116301
|
[37] |
Wang J Y, Zhou Y C, Lin Z J, Liao T and He L F 2006 Phys. Rev. B 73 134107
|
[38] |
Korir K K, Anrolo G O, Makau N W and Joubert D P 2011 Diam. Relat. Mater. 20 157
|
[39] |
Isaev E I,. Ahuja R, Simak S I, Lichtenstein A I, Kh Y, Johansson B and Abrikosov I A 2005 Phys. Rev. B 72 064515
|
[40] |
Kamı T, Bagcı S, Tütüncü H M, Duman S and Srivastava G P 2011 Philos. Mag. 91 946
|
[41] |
Nartowski A M, Parkin I P, Mackenzie M, Craven A J and Macleod I 1999 J. Mater. Chem. 9 1275
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|