Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 086403    DOI: 10.1088/1674-1056/ab9440

Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure

Jiansheng Dong(董健生), Gang Ouyang(欧阳钢)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Synergetic Innovation Center for Quantum Effects and Applications(SICQEA), Hunan Normal University, Changsha 410081, China
Abstract  Understanding the physical mechanism of structural stability and transition in various polytypes of layered transition metal dichalcogenides under the external stimulus is of crucial importance for their new applications. Here, we investigate the thickness-dependent structural properties of MoS2 under the condition of hydrostatic pressure in terms of bond relaxation and thermodynamics considerations. For both types of MoS2 structures, we find that the transition and metallization are significantly modulated by hydrostatic pressure and the number of layers. We establish a pressure-size phase diagram to address the transition mechanism. Our study not only provides insights into the thickness-dependent structural properties of MoS2, but also shows a theoretical guidance for the design and fabrication of MoS2-based devices.
Keywords:  bond relaxation      thickness effect      layered transition metal dichalcogenides      structural transition      pressure modulation  
Received:  03 February 2020      Revised:  19 April 2020      Accepted manuscript online: 
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  64.10.+h (General theory of equations of state and phase equilibria) (Finite-size systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91833302).
Corresponding Authors:  Gang Ouyang     E-mail:

Cite this article: 

Jiansheng Dong(董健生), Gang Ouyang(欧阳钢) Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure 2020 Chin. Phys. B 29 086403

[1] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[2] Tan C L and Zhang H 2015 Chem. Soc. Rev. 44 2713
[3] Radisavljevic B, Radenovic A, Brivio J and Kis A 2011 Nat. Nanotechnol. 6 147
[4] Maeso D, Gomez A C, Agraït N and Bollinger G R 2019 Adv. Electron. Mater. 5 1900141
[5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Stranoet M S 2012 Nat. Nanotechnol. 7 699
[6] Roldan R, Castellanos-Gomez A, Cappelluti E and Guinea F 2015 J. Phys.:Condens. Matter. 27 313201
[7] Shahraki M A, Pourfath M, Member S and Esseni D 2019 IEEE T. Electron. Dev. 66 1997
[8] Chen Y F, Xi J Y, Dumcenco D O, Liu Z, Suenaga K, Wang D, Shuai Z G, Huang Y S and Xie L M 2013 ACS Nano 7 4610
[9] Liu K H, Zhang L M, Cao T, Jin C H, Qiu D N, Zhou Q, Zettl A, Yang P D, Louie S G and Wang F 2014 Nat. Commun. 5 4966
[10] Huang Y P, Huang X L, Wang X, Zhang W T, Zhou D, Zhou Q, Liu B B and Cui T 2019 Chin. Phys. B 28 096402
[11] Wang W D, Li L L, Yang C C, Soler-Crespo R A, Meng Z X, Li M L, Zhang X, Keten S and Espinosa H D 2017 Nanotechnology 28 164005
[12] Ma X, Li Z Hui, Jing X L, Gu H K, Tian H, Dong Q, Wang P, Liu R, Liu B and Li Q J 2019 Chin. Phys. B 28 066402
[13] Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 5 4731
[14] Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M and Chen X J 2014 Phys. Rev. Lett. 113 036802
[15] Aksoy R, Ma Y, Selvi E, Chyu M C, Ertas A and White A 2006 J. Phys. Chem. Solid 67 1914
[16] Bandaru N, Kumar R S, Sneed D, Tschauner O, Baker J, Antonio D, Luo S N, Hartman T, Zhao Y S and Venkat R 2014 J. Phys. Chem. C 118 3230
[17] Jiang J J, Li H P, Dai L D, Hu H Y and Zhao C S 2016 AIP Adv. 6 035214
[18] Zhuang Y K, Dai L D, Wu L, Li H P, Hu H Y, Liu K X, Yang L F and Pu C 2017 Appl. Phys. Lett. 110 122103
[19] Cheng X, Li Y, Shang J, Hu C S, Ren Y F, Liu M and Qi Z M 2018 Nano Res. 11 855
[20] Hromadova L, Martoňák R and Tosatti E 2013 Phys. Rev. B 87 144105
[21] Fan X F, Chang C H, Zheng W T, Kuo J L and Singh D J 2015 J. Phys. Chem. C 119 10189
[22] Fan X, Singh D J, Jiang Q and Zheng W T 2016 Phys. Chem. Chem. Phys. 18 12080
[23] Chi Z, Chen X, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu S Q, Li Y C, Zhao J G, Kagayama T, Ma Y M and Yang Z R 2018 Phys. Rev. Lett. 120 037002
[24] Zhao Z, Zhang H, Yuan H, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y and Mao W L 2015 Nat. Commun. 6 7312
[25] Kohulák O and Martoňák R 2017 Phys. Rev. B 95 054105
[26] Rifliková M, Martoňák R and Tosatti E 2014 Phys. Rev. B 90 035108
[27] Duwal S and Yoo C S 2016 J. Phys. Chem. C 120 5101
[28] Nayak A P, Pandey T, Voiry D, Liu J, Moran S T, Sharma A, Tan C, Chen C H, Li L J, Chhowalla M, Lin J F, Singh A K and Akinwande D 2014 Nano Lett. 15 346
[29] Kim J S, Ahmad R, Pandey T, Rai A, Feng S M, Yang J, Lin Z, Terrones M, Banerjee S K, Singh A K, Akinwande D and Lin J F 2017 2D Mater. 5 015008
[30] Ghorbani-Asl M, Borini S, Kuc A and Heine T 2013 Phys. Rev. B 87 235434
[31] He J, Hummer K and Franchini C 2014 Phys. Rev. B 89 075409
[32] Liang T, Phillpot S R and Sinnott S B 2009 Phys. Rev. B 79 245110
[33] Li T 2012 Phys. Rev. B 85 235407
[34] Cooper R C, Lee C, Marianetti C A, Wei X D, Hone J and Kysar J W 2013 Phys. Rev. B 87 035423
[35] Zhao Y, Liao C and Ouyang G 2018 J. Phys. D:Appl. Phys. 51 185101
[36] Aitken Z H and Huang R 2010 J. Appl. Phys. 107 123531
[37] Sun C Q, Li C M, Bai H L and Jiang E Y 2005 Nanotechnology 16 1290
[38] Chen Z, Sun C Q, Zhou Y and Ouyang G 2008 J. Phys. Chem. C 112 2423
[39] Zhang A, Luo S, Ouyang G and Yang G W 2013 J. Chem. Phys. 138 244702
[40] Sun C Q 2007 Prog. Solid State Chem. 35 1
[41] Ouyang G, Wang C X and Yang G W 2009 Chem. Rev. 109 4221
[42] Zhang A, Zhu Z M, He Y and Ouyang G 2012 Appl. Phys. Lett. 100 171912
[43] Xiong S and Cao G X 2015 Nanotechnology 26 185705
[44] Varshney V, Patnaik S S, Muratore C, Roy A K, Voevodin A A and Farmer B L 2010 Comput. Mater. Sci. 48 101
[45] Guo H, Yang T, Tao P, Wang Y and Zhang Z D 2013 J. Appl. Phys. 113 013709
[46] Chu S, Park C and Shen G 2016 Phys. Rev. B 94 020101
[47] Birch F 1947 Phys. Rev. 71 809
[48] Ouyang G, Sun C Q and Zhu W G 2008 J. Phys. Chem. B 112 5027
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[3] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
[4] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[5] Semiconductor-metal transition in GaAs nanowires under high pressure
Yi-Lan Liang(梁艺蓝), Zhen Yao(姚震), Xue-Tong Yin(殷雪彤), Peng Wang(王鹏), Li-Xia Li(李利霞), Dong Pan(潘东), Hai-Yan Li(李海燕), Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰), Jian-Hua Zhao(赵建华). Chin. Phys. B, 2019, 28(7): 076401.
[6] Magnetic phase transition and magnetocaloric effect in Mn1-xZnxCoGe alloys
Shen Cheng-Juan (沈程娟), Liu Qiang (刘强), Gong Yuan-Yuan (龚元元), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(9): 097502.
[7] Controllable synthesis of fullerene nano/microcrystals and their structural transformation induced by high pressure
Yao Ming-Guang (姚明光), Du Ming-Run (杜明润), Liu Bing-Bing (刘冰冰). Chin. Phys. B, 2013, 22(9): 098109.
[8] Microstructure and structural phase transitions in iron-based superconductors
Wang Zhen (王臻), Cai Yao (蔡瑶), Yang Huai-Xin (杨槐馨), Tian Huan-Fang (田焕芳), Wang Zhi-Wei (王秩伟), Ma Chao (马超), Chen Zhen (陈震), Li Jian-Qi (李建奇). Chin. Phys. B, 2013, 22(8): 087409.
[9] Physics picture from neutron scattering study on Fe-based superconductors
Bao Wei (鲍威). Chin. Phys. B, 2013, 22(8): 087405.
[10] Magnetostructural transition in NiCuCoMnGa alloys
Li Pan-Pan (李盼盼), Wang Jing-Min (王敬民), Jiang Cheng-Bao (蒋成保). Chin. Phys. B, 2013, 22(8): 088105.
[11] R-site cation randomness effect in thec A-site ordered Y0.5La0.5BaMn2O6 compound
Gao Qing-Qing (高庆庆), Li Jing-Bo (李静波), Li Guan-Nan (李冠男), Rao Guang-Hui (饶光辉), Luo Jun (骆军), Liu Guang-Yao (刘广耀), Liang Jing-Kui (梁敬魁). Chin. Phys. B, 2013, 22(7): 077502.
[12] Magnetic phase transitions and magnetocaloric effect in the Fe-doped MnNiGe alloys
Zhang Cheng-Liang(张成亮), Wang Dun-Hui(王敦辉), Chen Jian(陈健), Wang Ting-Zhi(王廷志), Xie Guang-Xi(谢广喜), and Zhu Chun(朱纯) . Chin. Phys. B, 2011, 20(9): 097501.
[13] The complex band structure for armchair graphene nanoribbons
Zhang Liu-Jun(张留军) and Xia Tong-Sheng(夏同生). Chin. Phys. B, 2010, 19(11): 117105.
[14] Structural transformation of Ge dimmers on Ge(001) surfaces induced by bias voltage
Qin Zhi-Hui (秦志辉), Shi Dong-Xia (时东霞), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2008, 17(12): 4580-4584.
No Suggested Reading articles found!