Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 046103    DOI: 10.1088/1674-1056/28/4/046103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective

Shaoqin Jiang(江少钦), Yong Huang(黄勇), Maozhi Li(李茂枝)
Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  

Classical molecular dynamics simulations have been performed to investigate the structural evolution in deformation-induced rejuvenation in Cu80Zr20 metallic glass. Metallic glasses obtained by different cooling rates can be rejuvenated into the glassy state with almost the same potential energy by compressive deformation. The aging effect in different metallic glasses in cooling process can be completely erased by the deformation-induced rejuvenation. The evolution of cavities has been analyzed to understand the structural evolution in rejuvenation. It is found that as metallic glasses are rejuvenated by mechanical deformation, a lot of cavities are created. The lower the potential energy is, the more the cavities are created. The cavities are mainly created in the regions without cavities or with small cavities populated, indicating that the irreversible rearrangements induced by deformation are accompanied by the creation of cavity. This finding elucidates the underlying structural basis for rejuvenation and aging in metallic glasses from the cavity perspective.

Keywords:  metallic glasses      rejuvenation      cavity  
Received:  24 January 2019      Revised:  22 February 2019      Accepted manuscript online: 
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  64.70.pe (Metallic glasses)  
  61.72.Qq (Microscopic defects (voids, inclusions, etc.))  
  62.20.-x (Mechanical properties of solids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51631003 and 51271197), the Ministry of Science and Technology (MOST) 973 Program, China (Grant No. 2015CB856800), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 16XNLQ01).

Corresponding Authors:  Maozhi Li     E-mail:  maozhili@ruc.edu.cn

Cite this article: 

Shaoqin Jiang(江少钦), Yong Huang(黄勇), Maozhi Li(李茂枝) Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective 2019 Chin. Phys. B 28 046103

[1] Concustell A, Mear F O, Surinach S, Baro M D and Greer A L 2009 Phil. Mag. Lett. 89 831
[2] Ke H B, Wen P, Peng H L, Wang W H and Greer A L 2011 Scr. Mater. 64 966
[3] Zhang M, Wang Y M, Li F X, Jiang S Q, Li M Z and Liu L 2017 Sci. Rep. 7 625
[4] Zhang Y, Wang W H and Greer A L 2006 Nat. Mater. 5 857
[5] Dmowski W, Yokoyama Y, Chuang A, Ren Y, Umemoto M, Tsuchiya K, Inoue A and Egami T 2010 Acta Mater. 58 429
[6] Meng F Q, Tsuchiya K, Seiichiro I I and Yokoyama Y 2012 Appl. Phys. Lett. 101 121914
[7] Magagnosc D J, Kumar G, Schroers J, Felfer P, Cairney J M and Gianola D S 2014 Acta Mater. 74 165
[8] Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A and Greer A L 2015 Nature 524 200
[9] Wakeda M, Saida J, Li J and Ogata S 2015 Sci. Rep. 5 10545
[10] Utz M, Debenedetti P G and Stillinger F H 2000 Phys. Rev. Lett. 84 1471
[11] Ding J, Cheng Y Q and Ma E 2014 Acta Mater. 69 343
[12] Heggen M, Spaepen F and Feuerbacher M 2005 J. Appl. Phys. 97 033506
[13] Struik L C E 1997 Polymer 38 4053
[14] Spaepen F 2006 Scr. Mater. 54 363
[15] Cohen M H and Turnbull D 1959 J. Chem. Phys. 31 1164
[16] Sheng H W, Ma E and Kramer M J 2012 JOM 64 856
[17] Sastry S, Corti D S, Debenedetti P G and Stillinger F H 1997 Phys. Rev. E 56 5524
[18] Wang X D, Aryal S, Zhong C, Ching W Y, Sheng H W, Zhang H, Zhang D X, Cao Q P and Jiang J Z 2015 Sci. Rep. 5 9184
[19] Guan P, Lu S, Spector M J B, Valavala P K and Falk M L 2013 Phys. Rev. Lett. 110 185502
[20] Pan S P, Feng S D, Qiao J W, Wang W M and Qin J Y 2016 J. Alloys Compd. 664 65
[21] Sastry S, Corti D S, Debenedetti P G and Stillinger F H 1997 Phys. Rev. E 56 5533
[22] Nagel C, Ratzke K, Schmidtke E, Wolff J, Geyer U and Faupel F 1998 Phys. Rev. B 57 10224
[23] Flores K M, Suh D and Dauskardt R H 2002 J. Mater. Res. 17 5
[24] Kanungo B P, Glade S C, Asoka-Kumar P and Flores K M 2004 Intermetallics 12 1073
[25] Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D and Popel P 2009 Phil. Mag. 89 967
[26] Plimpton S 1995 J. Comput. Phys. 117 1
[27] Sietasma J and Thijsse B J 1995 Phys. Rev. B 52 3248
[28] Bernal J D 1964 Proc. R. Soc. Lond. A 280 299
[29] Shang B S, Li M Z, Yao Y G, Lu Y J and Wang W H 2014 Phys. Rev. E 90 042303
[30] Cheng Y Q and Ma E 2011 Prog. Mater. Sci. 56 379
[31] Hu Q, Zeng X R and Fu M W 2012 J. Appl. Phys. 111 083523
[32] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[33] Falk M L and Langer J S 1998 Phys. Rev. E 57 7192
[34] Spaepen F 1977 Acta Metall. 25 407
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[8] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[9] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[10] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[11] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[12] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[13] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[14] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[15] Wide dynamic detection range of methane gas based on enhanced cavity absorption spectroscopy
Yu Wang(汪玉), Bo-Kun Ding(丁伯坤), Kun-Yang Wang(王坤阳), Jiao-Xu Mei(梅教旭), Ze-Lin Han(韩泽林), Tu Tan(谈图), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2022, 31(4): 040705.
No Suggested Reading articles found!