|
|
Effect of weak disorder in multi-Weyl semimetals |
Zhen Ning(宁震)1, Bo Fu(付博)2, Qinwei Shi(石勤伟)3, Xiaoping Wang(王晓平)1,3 |
1 Department of Physics, University of Science and Technology of China, Hefei 230026, China; 2 Department of Physics, The University of Hong Kong, Hong Kong, China; 3 Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We study the behaviors of three-dimensional double and triple Weyl fermions in the presence of weak random potential. By performing the Wilsonian renormalization group (RG) analysis, we reveal that the quasiparticle experiences strong renormalization which leads to the modification of the density of states and quasiparticle residue. We further utilize the RG analysis to calculate the classical conductivity and show that the diffusive transport is substantially corrected due to the novel behavior of the quasiparticle and can be directly measured by experiments.
|
Received: 05 March 2020
Revised: 18 May 2020
Accepted manuscript online:
|
PACS:
|
72.80.Ng
|
(Disordered solids)
|
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
11.10.Gh
|
(Renormalization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874337). |
Corresponding Authors:
Bo Fu
E-mail: bofu123@mail.ustc.edu.cn
|
Cite this article:
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平) Effect of weak disorder in multi-Weyl semimetals 2020 Chin. Phys. B 29 077202
|
[1] |
Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, et al. 2015 Nat. Phys. 11 724
|
[2] |
Xu S Y, Belopolski I, Alidoust N, Neupane M, Zhang C, et al. 2015 Science 349 613
|
[3] |
Wang H C and Wang J 2018 Chin. Phys. B 27 107402
|
[4] |
Xu S Y, Alidoust N, Belopolski I, Zhang C, Bian G, et al. 2015 Nat. Phys. 11 748
|
[5] |
Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
|
[6] |
Burkov A A 2014 Phys. Rev. Lett. 113 187202
|
[7] |
Lu H Z and Sheng S Q 2016 Chin. Phys. B25, 117202
|
[8] |
Sun L and Wan S L 2015 Chin. Phys. Lett. 32 057501
|
[9] |
Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
|
[10] |
Fang C, Gilbert M J, Dai X and Bernevig B A 2012 Phys. Rev. Lett. 108 266802
|
[11] |
Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, et al. 2016 Proc. Natl. Acad. Sci. USA 113 1180
|
[12] |
Liu Q H and Zunger A 2017 Phys. Rev. X 7 021019
|
[13] |
Mai X Y, Zhang D W, Li Z and Zhu S L 2017 Phys. Rev. A 95 063616
|
[14] |
Lepori L, Fulga I C, Trombettoni A and Burrello M 2016 Phys. Rev. A 94 053633
|
[15] |
Roy B, Goswami P and Juricic V 2017 Phys. Rev. B 95 201102(R)
|
[16] |
Lai H H 2015 Phys. Rev. B 91 235131
|
[17] |
Zhang S X, Jian S K and Yao H 2017 Phys. Rev. B 96 241111(R)
|
[18] |
Chen Q and Fiete G A 2016 Phys. Rev. B 93 155125
|
[19] |
Park S, Woo S, Mele E J and Min H 2017 Phys. Rev. B 95 161113(R)
|
[20] |
Ahn S, Mele E J and Min H 2017 Phys. Rev. B 95 161112(R)
|
[21] |
Mukherjee S P and Carbotte J P 2018 Phys. Rev. B 97 045150
|
[22] |
Gorbar E V, Miransky V A, Shovkovy I A and Sukhachov P O 2017 Phys. Rev. B 96 155138
|
[23] |
Goswami P and Chakravarty S 2011 Phys. Rev. Lett. 107 196803
|
[24] |
Syzranov S V, Radzihovsky L and Gurarie V 2015 Phys. Rev. Lett. 114 166601
|
[25] |
Syzranov S V, Ostrovsky P M, Gurarie V and Radzihovsky L 2016 Phys. Rev. B 93 155113
|
[26] |
Pixley J H, Goswami Pallab and Sarma S Das 2015 Phys. Rev. Lett. 115 076601
|
[27] |
Fu B, Zhu W, Shi Q, Li Q, Yang J, and Zhang Z 2017 Phys. Rev. Lett. 118 146401
|
[28] |
Sbierski B, Trescher M, Bergholtz E J and Brouwer P W 2017 Phys. Rev. B 95 115104
|
[29] |
Bera S, Sau J D and Roy B 2016 Phys. Rev. B 93 201302(R)
|
[30] |
Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
|
[31] |
Ioffe A F, and Regel A R 1960 Prog. Semicond. 4 237
|
[32] |
Imry Y 2002 Introduction to Mesoscopic Physics (Oxford: Oxford University Press)
|
[33] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[34] |
Altland A 2006 Phys. Rev. Lett. 97 236802
|
[35] |
Song H D, Sheng D, Wang A Q, Li J G, Yu D P and Liao Z M 2017 Chin. Phys. B 26 037301
|
[36] |
Wang L M, Shi S C and Zhang W Y 2013 Chin. Phys. B 22 127201
|
[37] |
Nersesyan A A, Tsvelik A M and Wenger F 1994 Phys. Rev. Lett. 72 2628
|
[38] |
Nersesyan A A, Tsvelik A M and Wenger F 1995 Nucl. Phys. B 438 561
|
[39] |
Aleiner I L, and Efetov K B 2006 Phys. Rev. Lett. 97 236801
|
[40] |
Ostrovsky P M, Gornyi I V and Mirlin A D 2006 Phys. Rev. B 74 235443
|
[41] |
Zhao P L, Wang J R, Wang A M and Liu G Z 2016 Phys. Rev. B 94 195114
|
[42] |
Isobe H, Yang B J, Chubukov A, Schmalian J and Nagaosa N 2016 Phys. Rev. Lett. 116 076803
|
[43] |
Banerjee S and Pickett W E 2012 Phys. Rev. B 86 075124
|
[44] |
Shon N H and Ando T 1998 J. Phys. Soc. Jpn 67 2421
|
[45] |
Akkermans E and Montambaux G 2007 Mesoscopic Physics of Electrons and Photons (Cambridge: Cambridge University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|