Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077201    DOI: 10.1088/1674-1056/ab99ba
RAPID COMMUNICATION Prev   Next  

Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain

Hao Hong(洪浩)1, Yang Cheng(程阳)1, Chunchun Wu(吴春春)1,2, Chen Huang(黄琛)1, Can Liu(刘灿)1, Wentao Yu(于文韬)1, Xu Zhou(周旭)1, Chaojie Ma(马超杰)1, Jinhuan Wang(王金焕)1,3, Zhihong Zhang(张智宏)1, Yun Zhao(赵芸)3, Jie Xiong(熊杰)2, Kaihui Liu(刘开辉)1
1 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China;
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
3 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  Carrier lifetime is one of the most fundamental physical parameters that characterizes the average time of carrier recombination in any material. The control of carrier lifetime is the key to optimizing the device function by tuning the electro-optical conversion quantum yield, carrier diffusion length, carrier collection process, etc. Till now, the prevailing modulation methods are mainly by defect engineering and temperature control, which have limitations in the modulation direction and amplitude of the carrier lifetime. Here, we report an effective modulation on the ultrafast dynamics of photoexcited carriers in two-dimensional (2D) MoS2 monolayer by uniaxial tensile strain. The combination of optical ultrafast pump-probe technique and time-resolved photoluminescence (PL) spectroscopy reveals that the carrier dynamics through Auger scattering, carrier-phonon scattering, and radiative recombination keep immune to the strain. But strikingly, the uniaxial tensile strain weakens the trapping of photoexcited carriers by defects and therefore prolongs the corresponding carrier lifetime up to 440% per percent applied strain. Our results open a new avenue to enlarge the carrier lifetime of 2D MoS2, which will facilitate its applications in high-efficient optoelectronic and photovoltaic devices.
Keywords:  two-dimensional materials      carrier dynamics      strain      trap states  
Received:  18 May 2020      Revised:  29 May 2020      Accepted manuscript online: 
PACS:  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
Fund: Project supported by the Natural Science Foundation of Beijing, China (Grant No. JQ19004), the Excellent Talents Training Support Fund of Beijing, China (Grant No. 2017000026833ZK11), the National Natural Science Foundation of China (Grant Nos. 51991340 and 51991342), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300903 and 2016YFA0300804), the Key Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010931001, 2020B010189001, 2018B010109009, and 2018B030327001), the Science Fund from the Municipal Science & Technology Commission of Beijing, China (Grant No. Z191100007219005), the Graphene Innovation Program of Beijing, China (Grant No. Z181100004818003), the Fund from the Bureau of Industry and Information Technology of Shenzhen City, China (Graphene platform 201901161512), the Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant No. 2016ZT06D348), and the Fund from the Science, Technology, and Innovation Commission of Shenzhen Municipality, China (Grant No. KYTDPT20181011104202253).
Corresponding Authors:  Kaihui Liu     E-mail:  khliu@pku.edu.cn

Cite this article: 

Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉) Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain 2020 Chin. Phys. B 29 077201

[1] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[2] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[3] Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotechnol. 7 490
[4] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[5] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L and Feng J 2012 Nat. Commun. 3 887
[6] Ye Z, Cao T, O'brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
[7] Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Nat. Phys. 13 931
[8] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[9] Liu C, Hong H, Wang Q, Liu P, Zuo Y, Liang J, Cheng Y, Zhou X, Wang J and Zhao Y 2019 Nanoscale 11 17195
[10] Cheng Y, Huang C, Hong H, Zhao Z and Liu K 2019 Chin. Phys. B 28 107304
[11] Yu W J, Liu Y, Zhou H, Yin A, Li Z, Huang Y and Duan X 2013 Nat. Nanotechnol. 8 952
[12] Britnell L, Ribeiro R, Eckmann A, Jalil R, Belle B, Mishchenko A, Kim Y J, Gorbachev R, Georgiou T and Morozov S 2013 Science 340 1311
[13] Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J and Koppens F H 2016 Nat. Nanotechnol. 11 42
[14] Sun Z, Martinez A and Wang F 2016 Nat. Photon. 10 227
[15] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D, Taniguchi T, Watanabe K, Kitamura K and Yao W 2014 Nat. Nanotechnol. 9 268
[16] Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotechnol. 9 257
[17] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[18] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
[19] Zhang L, Chu W, Zheng Q, Benderskii A V, Prezhdo O V and Zhao J 2019 J. Phys. Chem. Lett. 10 6151
[20] Sun Y, Meng Y, Dai R, Yang Y, Xu Y, Zhu S, Shi Y, Xiu F and Wang F 2019 Opt. Lett. 44 4103
[21] Korn T, Heydrich S, Hirmer M, Schmutzler J and Schüller C 2011 Appl. Phys. Lett. 99 102109
[22] Wang R, Ruzicka B A, Kumar N, Bellus M Z, Chiu H Y and Zhao H 2012 Phys. Rev. B 86 045406
[23] Shi H Y, Yan R S, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L B 2013 ACS Nano 7 1072
[24] Aleithan S H, Livshits M Y, Khadka S, Rack J J, Kordesch M E and Stinaff E 2016 Phys. Rev. B 94 035445
[25] He J Q, Kumar N, Bellus M Z, Chiu H Y, He D W, Wang Y S and Zhao H 2014 Nat. Commun. 5 5622
[26] Amani M, Lien D H, Kiriya D, Xiao J, Azcatl A, Noh J, Madhvapathy S R, Addou R, Santosh K and Dubey M 2015 Science 350 1065
[27] Lorchat E, López L E P, Robert C, Lagarde D, Froehlicher G, Taniguchi T, Watanabe K, Marie X and Berciaud S 2020 Nat. Nanotechnol. 15 283
[28] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
[29] He K, Poole C, Mak K F and Shan J 2013 Nano Lett. 13 2931
[30] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592
[31] McCreary A, Ghosh R, Amani M, Wang J, Duerloo K A N, Sharma A, Jarvis K, Reed E J, Dongare A M and Banerjee S K 2016 ACS Nano 10 3186
[32] Ji J, Zhang A, Xia T, Gao P, Jie Y, Zhang Q and Zhang Q 2016 Chin. Phys. B 25 077802
[33] Doratotaj D, Simpson J R and Yan J A 2016 Phys. Rev. B 93 075401
[34] Li T H, Zhou Z H, Guo J H and Hu F R 2016 Chin. Phys. Lett. 33 046201
[35] Liang J, Zhang J, Li Z, Hong H, Wang J, Zhang Z, Zhou X, Qiao R, Xu J and Gao P 2017 Nano Lett. 17 7539
[36] Niehues I, Schmidt R, Drüppel M, Marauhn P, Christiansen D, Selig M, Berghäuser G, Wigger D, Schneider R and Braasch L 2018 Nano Lett. 18 1751
[37] Zhang L, He D, He J, Fu Y and Wang Y 2019 Chin. Phys. B 28 087201
[38] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
[39] Yariv A 1997 Optical electronics in modern communications, 5th edn. (New York: Oxford University Press) p. 425
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[6] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[7] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[13] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[14] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[15] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
No Suggested Reading articles found!