|
|
Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain |
Hao Hong(洪浩)1, Yang Cheng(程阳)1, Chunchun Wu(吴春春)1,2, Chen Huang(黄琛)1, Can Liu(刘灿)1, Wentao Yu(于文韬)1, Xu Zhou(周旭)1, Chaojie Ma(马超杰)1, Jinhuan Wang(王金焕)1,3, Zhihong Zhang(张智宏)1, Yun Zhao(赵芸)3, Jie Xiong(熊杰)2, Kaihui Liu(刘开辉)1 |
1 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China; 2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; 3 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Carrier lifetime is one of the most fundamental physical parameters that characterizes the average time of carrier recombination in any material. The control of carrier lifetime is the key to optimizing the device function by tuning the electro-optical conversion quantum yield, carrier diffusion length, carrier collection process, etc. Till now, the prevailing modulation methods are mainly by defect engineering and temperature control, which have limitations in the modulation direction and amplitude of the carrier lifetime. Here, we report an effective modulation on the ultrafast dynamics of photoexcited carriers in two-dimensional (2D) MoS2 monolayer by uniaxial tensile strain. The combination of optical ultrafast pump-probe technique and time-resolved photoluminescence (PL) spectroscopy reveals that the carrier dynamics through Auger scattering, carrier-phonon scattering, and radiative recombination keep immune to the strain. But strikingly, the uniaxial tensile strain weakens the trapping of photoexcited carriers by defects and therefore prolongs the corresponding carrier lifetime up to 440% per percent applied strain. Our results open a new avenue to enlarge the carrier lifetime of 2D MoS2, which will facilitate its applications in high-efficient optoelectronic and photovoltaic devices.
|
Received: 18 May 2020
Revised: 29 May 2020
Accepted manuscript online:
|
PACS:
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
61.72.Hh
|
(Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))
|
|
Fund: Project supported by the Natural Science Foundation of Beijing, China (Grant No. JQ19004), the Excellent Talents Training Support Fund of Beijing, China (Grant No. 2017000026833ZK11), the National Natural Science Foundation of China (Grant Nos. 51991340 and 51991342), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300903 and 2016YFA0300804), the Key Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010931001, 2020B010189001, 2018B010109009, and 2018B030327001), the Science Fund from the Municipal Science & Technology Commission of Beijing, China (Grant No. Z191100007219005), the Graphene Innovation Program of Beijing, China (Grant No. Z181100004818003), the Fund from the Bureau of Industry and Information Technology of Shenzhen City, China (Graphene platform 201901161512), the Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant No. 2016ZT06D348), and the Fund from the Science, Technology, and Innovation Commission of Shenzhen Municipality, China (Grant No. KYTDPT20181011104202253). |
Corresponding Authors:
Kaihui Liu
E-mail: khliu@pku.edu.cn
|
Cite this article:
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉) Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain 2020 Chin. Phys. B 29 077201
|
[1] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[2] |
Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
|
[3] |
Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotechnol. 7 490
|
[4] |
Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
|
[5] |
Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L and Feng J 2012 Nat. Commun. 3 887
|
[6] |
Ye Z, Cao T, O'brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
|
[7] |
Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Nat. Phys. 13 931
|
[8] |
Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
|
[9] |
Liu C, Hong H, Wang Q, Liu P, Zuo Y, Liang J, Cheng Y, Zhou X, Wang J and Zhao Y 2019 Nanoscale 11 17195
|
[10] |
Cheng Y, Huang C, Hong H, Zhao Z and Liu K 2019 Chin. Phys. B 28 107304
|
[11] |
Yu W J, Liu Y, Zhou H, Yin A, Li Z, Huang Y and Duan X 2013 Nat. Nanotechnol. 8 952
|
[12] |
Britnell L, Ribeiro R, Eckmann A, Jalil R, Belle B, Mishchenko A, Kim Y J, Gorbachev R, Georgiou T and Morozov S 2013 Science 340 1311
|
[13] |
Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J and Koppens F H 2016 Nat. Nanotechnol. 11 42
|
[14] |
Sun Z, Martinez A and Wang F 2016 Nat. Photon. 10 227
|
[15] |
Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D, Taniguchi T, Watanabe K, Kitamura K and Yao W 2014 Nat. Nanotechnol. 9 268
|
[16] |
Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotechnol. 9 257
|
[17] |
Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
|
[18] |
Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
|
[19] |
Zhang L, Chu W, Zheng Q, Benderskii A V, Prezhdo O V and Zhao J 2019 J. Phys. Chem. Lett. 10 6151
|
[20] |
Sun Y, Meng Y, Dai R, Yang Y, Xu Y, Zhu S, Shi Y, Xiu F and Wang F 2019 Opt. Lett. 44 4103
|
[21] |
Korn T, Heydrich S, Hirmer M, Schmutzler J and Schüller C 2011 Appl. Phys. Lett. 99 102109
|
[22] |
Wang R, Ruzicka B A, Kumar N, Bellus M Z, Chiu H Y and Zhao H 2012 Phys. Rev. B 86 045406
|
[23] |
Shi H Y, Yan R S, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L B 2013 ACS Nano 7 1072
|
[24] |
Aleithan S H, Livshits M Y, Khadka S, Rack J J, Kordesch M E and Stinaff E 2016 Phys. Rev. B 94 035445
|
[25] |
He J Q, Kumar N, Bellus M Z, Chiu H Y, He D W, Wang Y S and Zhao H 2014 Nat. Commun. 5 5622
|
[26] |
Amani M, Lien D H, Kiriya D, Xiao J, Azcatl A, Noh J, Madhvapathy S R, Addou R, Santosh K and Dubey M 2015 Science 350 1065
|
[27] |
Lorchat E, López L E P, Robert C, Lagarde D, Froehlicher G, Taniguchi T, Watanabe K, Marie X and Berciaud S 2020 Nat. Nanotechnol. 15 283
|
[28] |
Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
|
[29] |
He K, Poole C, Mak K F and Shan J 2013 Nano Lett. 13 2931
|
[30] |
Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592
|
[31] |
McCreary A, Ghosh R, Amani M, Wang J, Duerloo K A N, Sharma A, Jarvis K, Reed E J, Dongare A M and Banerjee S K 2016 ACS Nano 10 3186
|
[32] |
Ji J, Zhang A, Xia T, Gao P, Jie Y, Zhang Q and Zhang Q 2016 Chin. Phys. B 25 077802
|
[33] |
Doratotaj D, Simpson J R and Yan J A 2016 Phys. Rev. B 93 075401
|
[34] |
Li T H, Zhou Z H, Guo J H and Hu F R 2016 Chin. Phys. Lett. 33 046201
|
[35] |
Liang J, Zhang J, Li Z, Hong H, Wang J, Zhang Z, Zhou X, Qiao R, Xu J and Gao P 2017 Nano Lett. 17 7539
|
[36] |
Niehues I, Schmidt R, Drüppel M, Marauhn P, Christiansen D, Selig M, Berghäuser G, Wigger D, Schneider R and Braasch L 2018 Nano Lett. 18 1751
|
[37] |
Zhang L, He D, He J, Fu Y and Wang Y 2019 Chin. Phys. B 28 087201
|
[38] |
Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
|
[39] |
Yariv A 1997 Optical electronics in modern communications, 5th edn. (New York: Oxford University Press) p. 425
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|