CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Raman scattering study of two-dimensional magnetic van der Waals compound VI3 |
Yi-Meng Wang(王艺朦)1, Shang-Jie Tian(田尚杰)1, Cheng-He Li(李承贺)1, Feng Jin(金峰)2, Jian-Ting Ji(籍建葶)2, He-Chang Lei(雷和畅)1, Qing-Ming Zhang(张清明)2,3 |
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices, Renmin University of China, Beijing 100872, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract The layered magnetic van der Waals materials have generated tremendous interest due to their potential applications and importance in fundamental research. Previous x-ray diffraction (XRD) studies on the magnetic van der Waals compound VI3, revealed a structural transition above the magnetic transition but output controversial analysis on symmetry. In this paper we carried out polarized Raman scattering measurements on VI3 from 10 K to 300 K, with focus on the two Ag phonon modes at ~ 71.1 cm-1 and 128.4 cm-1. Our careful symmetry analysis based on the angle-dependent spectra demonstrates that the crystal symmetry can be well described by C2h rather than D3d both above and below structural phase transition. We further performed temperature-dependent Raman experiments to study the magnetism in VI3. Fano asymmetry and anomalous linewidth drop of two Ag phonon modes at low temperatures, point to a significant spin-phonon coupling. This is also supported by the softening of 71.1-cm-1 mode above the magnetic transition. The study provides the fundamental information on lattice dynamics and clarifies the symmetry in VI3. And spin-phonon coupling existing in a wide temperature range revealed here may be meaningful in applications.
|
Received: 08 February 2020
Revised: 09 March 2020
Accepted manuscript online:
|
PACS:
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
Fund: Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504), the National Natural Science Foundation of China (Grant Nos. 11774419, U1932215, 11774423, and 11822412), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (RUC) (Grant Nos. 15XNLQ07, 18XNLG14, and 19XNLG17). |
Corresponding Authors:
Qing-Ming Zhang
E-mail: qmzhang@ruc.edu.cn
|
Cite this article:
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明) Raman scattering study of two-dimensional magnetic van der Waals compound VI3 2020 Chin. Phys. B 29 056301
|
[1] |
Huang B, Clark G, Moratalla E N, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Herrero P J and Xu X D 2017 Nature 546 270
|
[2] |
Jin W C, Kim H H, Ye Z P, Li S W, Rezaie P, Diaz F, Siddiq S, Wauer E, Yang B, Li C H, Tian S J, Sun K, Lei H C, Tsen A W, Zhao L Y and He R 2018 Nat. Comm. 9 5122
|
[3] |
Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Hoh T W and Park J G 2016 Sci. Rep. 6 20904
|
[4] |
Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G and Cheong H 2019 Nat. Comm. 10 345
|
[5] |
Ozcan M, Ozen S, Yagmurcukardes M and Sahin H 2020 J. Magn. Magn. Mater. 493 165668
|
[6] |
McGuire M A 2017 Crystals 7 121
|
[7] |
Iyikanat F, Yagmurcukardes M, Senger R T and Sahin H 2018 J. Mater. Chem. C 6 2019
|
[8] |
Wang M X, Zhang J, Wang Z P, Wang C, van Smaalen S, Xiao H, Chen X, Du C L, Xu X G and Tao X T 2019 Adv. Opt. Mater. 8 901446
|
[9] |
Angelkort J, Wölfel A, Schönleber A, Smaalen S V and Kremer K R 2009 Phys. Rev. B 80 144416
|
[10] |
Bykov M, Bykova E, Dubrovinsky L, Hanfland M, Liermann H P and Smaalen S V 2015 Sci. Rep. 5 9647
|
[11] |
Miao N H, Xu B, Zhu L G, Zhou J and Sun Z M 2018 J. Am. Chem. Soc. 140 2417
|
[12] |
Zhang T L, Wang Y M, Li H X, Zhong F, Shi J, Wu M H, Sun Z Y, Shen W F, Wei B, Hu W D, Liu X F, Huang L, Hu C G, Wang Z C, Jiang C B, Yang S X, Zhang Q M and Qu Z 2019 ACS Nano 13 11353
|
[13] |
Lee J, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C, Park J and Cheong H 2016 Nano Lett. 16 7433
|
[14] |
Murayama C, Okabe M, Urushihara D, Asaka T, Fukuda K, Isobe M, Yamamoto K and Matsushita Y 2016 J. Appl. Phys. 120 142114
|
[15] |
Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
|
[16] |
Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738
|
[17] |
Frindt R F, Yang D and Westreich P 2005 J. Mater. Res. 20 1107
|
[18] |
Juza D, Giegling D and Schäfer H 1969 Z. Anorg. Allg. Chem. 366 121
|
[19] |
Dillon J and Olson C 1965 J. Appl. Phys. 36 1259
|
[20] |
Wilson J, Maule C, Strange P and Tothill J 1987 J. Phys. C 20 4159
|
[21] |
Starr C, Bitter F and Kaufmann A R 1940 Phys. Rev. 58 977
|
[22] |
Zhou Y G, Lu H F, Zu X T and Gao F 2016 Sci. Rep. 6 19407
|
[23] |
He J, Ma S, Lyu P and Nachtigall P 2016 J. Mater. Chem. C 4 2518
|
[24] |
Wang H, Fan F, Zhu S and Wu H 2016 Europhys. Lett. 114 47001
|
[25] |
Lado J L and Fernández R J 2017 2D Mater. 4 035002
|
[26] |
Zhong D, Seyler K L, Xia Y, Lin P, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Wang Y, Xiao D, Fu C K M and Xu X D 2017 Sci. Adv. 3 e1603113
|
[27] |
Tian S, Zhang J F, Li C, Ying T, Li S, Zhan X, Liu K and Lei H 2019 J. Am. Chem. Soc. 141 5326
|
[28] |
Kong T, Stolze K, Timmons E I, Tan J, Ni D, Guo S, Yang Z, Prozorov R and Cava R J 2019 Adv. Mater. 31 1808074
|
[29] |
Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C, Khomskii D I, Saxena S S and Park J 2019 Phys. Rev. B 99 041402
|
[30] |
Liu Y, Abeykoon M and Petrovic C 2020 Phys. Rev. Res. 2 013013
|
[31] |
An M, Zhang Y, Chen J, Zhang H M, Guo Y and Dong S 2019 J. Phys. Chem. C 123 30545
|
[32] |
Askurt M, Eren I, Yagmurcukardes M and Sahin H 2020 Appl. Surf. Sci. 508 144937
|
[33] |
Larson D T and Kaxiras E 2018 Phys. Rev. B 98 085406
|
[34] |
Djurdjić-Mijin S, Šolajić A, PeŠić J, Šćepanović M, Liu Y, Baum A, Petrovic C, Lazarevi ć N and Popovi ć Z V 2018 Phys. Rev. B 98 104307
|
[35] |
Wang Y M, Zhang J F, Li C C, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L and Zhang Q M 2019 Chin. Phy. B 28 056301
|
[36] |
Djokić D M, Popović Z V and Vukajlović F R 2008 Phys. Rev. B 77 014305
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|