Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 056301    DOI: 10.1088/1674-1056/ab8215

Raman scattering study of two-dimensional magnetic van der Waals compound VI3

Yi-Meng Wang(王艺朦)1, Shang-Jie Tian(田尚杰)1, Cheng-He Li(李承贺)1, Feng Jin(金峰)2, Jian-Ting Ji(籍建葶)2, He-Chang Lei(雷和畅)1, Qing-Ming Zhang(张清明)2,3
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  The layered magnetic van der Waals materials have generated tremendous interest due to their potential applications and importance in fundamental research. Previous x-ray diffraction (XRD) studies on the magnetic van der Waals compound VI3, revealed a structural transition above the magnetic transition but output controversial analysis on symmetry. In this paper we carried out polarized Raman scattering measurements on VI3 from 10 K to 300 K, with focus on the two Ag phonon modes at ~ 71.1 cm-1 and 128.4 cm-1. Our careful symmetry analysis based on the angle-dependent spectra demonstrates that the crystal symmetry can be well described by C2h rather than D3d both above and below structural phase transition. We further performed temperature-dependent Raman experiments to study the magnetism in VI3. Fano asymmetry and anomalous linewidth drop of two Ag phonon modes at low temperatures, point to a significant spin-phonon coupling. This is also supported by the softening of 71.1-cm-1 mode above the magnetic transition. The study provides the fundamental information on lattice dynamics and clarifies the symmetry in VI3. And spin-phonon coupling existing in a wide temperature range revealed here may be meaningful in applications.
Keywords:  Raman scattering      two-dimensional magnetic van der Waals materials      lattice dynamics      magnetism  
Received:  08 February 2020      Revised:  09 March 2020      Accepted manuscript online: 
PACS:  63.20.-e (Phonons in crystal lattices)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  75.75.-c (Magnetic properties of nanostructures)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504), the National Natural Science Foundation of China (Grant Nos. 11774419, U1932215, 11774423, and 11822412), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (RUC) (Grant Nos. 15XNLQ07, 18XNLG14, and 19XNLG17).
Corresponding Authors:  Qing-Ming Zhang     E-mail:

Cite this article: 

Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明) Raman scattering study of two-dimensional magnetic van der Waals compound VI3 2020 Chin. Phys. B 29 056301

[1] Huang B, Clark G, Moratalla E N, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Herrero P J and Xu X D 2017 Nature 546 270
[2] Jin W C, Kim H H, Ye Z P, Li S W, Rezaie P, Diaz F, Siddiq S, Wauer E, Yang B, Li C H, Tian S J, Sun K, Lei H C, Tsen A W, Zhao L Y and He R 2018 Nat. Comm. 9 5122
[3] Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Hoh T W and Park J G 2016 Sci. Rep. 6 20904
[4] Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G and Cheong H 2019 Nat. Comm. 10 345
[5] Ozcan M, Ozen S, Yagmurcukardes M and Sahin H 2020 J. Magn. Magn. Mater. 493 165668
[6] McGuire M A 2017 Crystals 7 121
[7] Iyikanat F, Yagmurcukardes M, Senger R T and Sahin H 2018 J. Mater. Chem. C 6 2019
[8] Wang M X, Zhang J, Wang Z P, Wang C, van Smaalen S, Xiao H, Chen X, Du C L, Xu X G and Tao X T 2019 Adv. Opt. Mater. 8 901446
[9] Angelkort J, Wölfel A, Schönleber A, Smaalen S V and Kremer K R 2009 Phys. Rev. B 80 144416
[10] Bykov M, Bykova E, Dubrovinsky L, Hanfland M, Liermann H P and Smaalen S V 2015 Sci. Rep. 5 9647
[11] Miao N H, Xu B, Zhu L G, Zhou J and Sun Z M 2018 J. Am. Chem. Soc. 140 2417
[12] Zhang T L, Wang Y M, Li H X, Zhong F, Shi J, Wu M H, Sun Z Y, Shen W F, Wei B, Hu W D, Liu X F, Huang L, Hu C G, Wang Z C, Jiang C B, Yang S X, Zhang Q M and Qu Z 2019 ACS Nano 13 11353
[13] Lee J, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C, Park J and Cheong H 2016 Nano Lett. 16 7433
[14] Murayama C, Okabe M, Urushihara D, Asaka T, Fukuda K, Isobe M, Yamamoto K and Matsushita Y 2016 J. Appl. Phys. 120 142114
[15] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
[16] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738
[17] Frindt R F, Yang D and Westreich P 2005 J. Mater. Res. 20 1107
[18] Juza D, Giegling D and Schäfer H 1969 Z. Anorg. Allg. Chem. 366 121
[19] Dillon J and Olson C 1965 J. Appl. Phys. 36 1259
[20] Wilson J, Maule C, Strange P and Tothill J 1987 J. Phys. C 20 4159
[21] Starr C, Bitter F and Kaufmann A R 1940 Phys. Rev. 58 977
[22] Zhou Y G, Lu H F, Zu X T and Gao F 2016 Sci. Rep. 6 19407
[23] He J, Ma S, Lyu P and Nachtigall P 2016 J. Mater. Chem. C 4 2518
[24] Wang H, Fan F, Zhu S and Wu H 2016 Europhys. Lett. 114 47001
[25] Lado J L and Fernández R J 2017 2D Mater. 4 035002
[26] Zhong D, Seyler K L, Xia Y, Lin P, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Wang Y, Xiao D, Fu C K M and Xu X D 2017 Sci. Adv. 3 e1603113
[27] Tian S, Zhang J F, Li C, Ying T, Li S, Zhan X, Liu K and Lei H 2019 J. Am. Chem. Soc. 141 5326
[28] Kong T, Stolze K, Timmons E I, Tan J, Ni D, Guo S, Yang Z, Prozorov R and Cava R J 2019 Adv. Mater. 31 1808074
[29] Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C, Khomskii D I, Saxena S S and Park J 2019 Phys. Rev. B 99 041402
[30] Liu Y, Abeykoon M and Petrovic C 2020 Phys. Rev. Res. 2 013013
[31] An M, Zhang Y, Chen J, Zhang H M, Guo Y and Dong S 2019 J. Phys. Chem. C 123 30545
[32] Askurt M, Eren I, Yagmurcukardes M and Sahin H 2020 Appl. Surf. Sci. 508 144937
[33] Larson D T and Kaxiras E 2018 Phys. Rev. B 98 085406
[34] Djurdjić-Mijin S, Šolajić A, PeŠić J, Šćepanović M, Liu Y, Baum A, Petrovic C, Lazarevi ć N and Popovi ć Z V 2018 Phys. Rev. B 98 104307
[35] Wang Y M, Zhang J F, Li C C, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L and Zhang Q M 2019 Chin. Phy. B 28 056301
[36] Djokić D M, Popović Z V and Vukajlović F R 2008 Phys. Rev. B 77 014305
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[6] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[7] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[11] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[12] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[13] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[14] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[15] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
No Suggested Reading articles found!