Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034205    DOI: 10.1088/1674-1056/ab683b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range

Jin-Rong Wang(王锦荣)1, Qing-Wei Wang(王庆伟)1, Long Tian(田龙)1,2, Jing Su(苏静)1,2, Yao-Hui Zheng(郑耀辉)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We report a low-noise, high-signal-to-noise-ratio (SNR) balanced homodyne detector based on the standard transimpedance amplifier circuit and the inductance and capacitance combination for the measurement of the bright squeezed state in the range from 1 kHz to 100 kHz. A capacitance is mounted at the input end of the AC branch to prevent the DC photocurrent from entering the AC branch and avoid AC branch saturation. By adding a switch at the DC branch, the DC branch can be flexibly turned on and off on different occasions. When the switch is on, the DC output provides a monitor signal for laser beam alignment. When the switch is off, the electronic noise of the AC branch is greatly reduced at audio-frequency band due to immunity to the impedance of the DC branch, hence the SNR of the AC branch is significantly improved. As a result, the electronic noise of the AC branch is close to -125 dBm, and the maximum SNR of the AC branch is 48 dB with the incident power of 8 mW in the range from 1 kHz to 100 kHz. The developed photodetector paves a path for measuring the bright squeezed state at audio-frequency band.
Keywords:  quantum optics      photodetector      low-noise      audio band  
Received:  04 October 2019      Revised:  05 December 2019      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11654002, 61575114, 11874250, and 11804207), the National Key Research and Development Program of China (Grant No. 2016YFA0301401), the Program for Sanjin Scholar of Shanxi Province, China, the Program for Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China, the Fund for Shanxi “1331 Project” Key Subjects Construction, China, and Key Research and Development Projects of Shanxi Province, China (Grant No. 201903D111001).
Corresponding Authors:  Yao-Hui Zheng     E-mail:  yhzheng@sxu.edu.cn

Cite this article: 

Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉) A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range 2020 Chin. Phys. B 29 034205

[1] Hou L L, Xue J Z, Sui Y X and Wang S 2019 Chin. Phys. B 28 094217
[2] Yang W H, Jin X L, Yu X D, Zheng Y H and Peng K C 2017 Opt. Express 25 24262
[3] Yu X D, Li W, Zhu S Y and Zhang J 2016 Chin. Phys. B 25 020304
[4] Du J S, Feng J X, Ma Y Y, Li Y J and Zhang K S 2018 Acta Sin. Quantum. Opt. 24 14
[5] Feng Y Y, Shi R H and Guo Y 2018 Chin. Phys. B 27 020302
[6] Schnabel R, Mavalvala N, McClelland D E and Lam P K 2010 Nat. Commun. 1 121
[7] The L I G O Scientific Collaboration 2011 Nat. Phys. 7 962
[8] Cella G and Giazotto A 2011 Rev. Sci. Instrum. 82 101101
[9] Abbott B P 2016 Phys. Rev. Lett. 116 061102
[10] Abbott B P 2017 Phys. Rev. Lett. 118 221101
[11] Polzik E S, Carri J and Kimble H J 1992 Phys. Rev. Lett. 68 3020
[12] Polzik E S, Carri J and Kimble H J 1992 Appl. Phys. B 55 279
[13] Li Y Q, Lynam P, Xiao M and Edwards P J 1997 Phys. Rev. Lett. 78 3105
[14] Li Y Q, Guzun D and Xiao M 1999 Phys. Rev. Lett. 82 5225
[15] Ralph T C 1999 Phys. Rev. A 61 010303
[16] Madsen L D, Usenko V C, Lassen M, Filip Radim and Andersen U L 2012 Nat. Commun. 3 1083
[17] Stefszky M S, Mow Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K and McClelland 2012 Class. Quantum. Grav. 29 145015
[18] Appel J, Hoffman D, Figueroa E and Lvovsky A I 2007 Phys. Rev. A 75 035802
[19] Liu Q, Feng J X, Li H, Jiao Y C and Zhang K S 2012 Chin. Phys. B 21 104204
[20] Tian J F, Zuo G H, Zhang Y C, Li G, Zhang P F and Zhang T C 2017 Chin. Phys. B 26 124206
[21] Zheng Y H, Wu Z Q, Huo M R and Zhou H J 2013 Chin. Phys. B 22 094206
[22] Lu D M and Fan H Y 2014 Chin. Phys. B 23 020302
[23] Masalov A V, Kuzhamuratov A and Lvovsky A I 2017 Rev. Sci. Instrum. 88 113109
[24] Qin J L, Yan Z H, Huo M R, Jia X J and Peng K C 2016 Chin. Opt. Lett. 14 122701
[25] Zhou H J, Yang W H, Li Z X, Li X F and Zheng Y H 2014 Rev. Sci. Instrum. 85 013111
[26] Huang D, Fang J, Wang C, Huang P and Zeng G H 2013 Chin. Phys. Lett. 30 114209
[27] Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z and Peng K C 2015 Opt. Express 23 23859
[28] Wang S F, Xiang X, Zhou C H, Zhai Y W, Quan R N, Wang M M, Hou F Y, Zhang S G, Dong R F and Liu T 2017 Rev. Sci. Instrum. 88 013107
[29] Zhou H J, Wang W Z, Chen C Y and Zheng Y H 2015 IEEE Sensors. J. 15 2101
[30] Wang X Y, Bai Z L, Du P Y, Li Y M and Peng K C 2012 Chin. Phys. Lett. 29 124202
[31] Valbruch H 2008 Squeezed Light for Gravitationalwave Astronomy (Ph.D. Dissertation) (Hannover: the Albert Einstein Institute and the Institute of Gravitational Physics of Leibniz Universitat Hannover) (in Germany)
[32] Wen X, Han Y S, Liu J Y, He J and Wang J M 2017 Opt. Express. 25 020737
[33] Kay A 1988 Photodiode Amplifier Noise Operational Amplifier Noise: Tech. Tips For Analyzing Reducing Noise (1st Edn.)
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[5] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[6] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[7] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[8] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[9] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[10] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[11] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[12] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[13] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[14] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[15] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
No Suggested Reading articles found!