ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift |
Ping Chen(陈平)1,2, De-Gang Zhao(赵德刚)1,2, De-Sheng Jiang(江德生)1, Jing Yang(杨静)1, Jian-Jun Zhu(朱建军)1,2, Zong-Shun Liu(刘宗顺)1, Wei Liu(刘炜)1, Feng Liang(梁锋)1, Shuang-Tao Liu(刘双韬)1, Yao Xing(邢瑶)1, Li-Qun Zhang(张立群)3 |
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences(CAS), Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Key Laboratory of Nano-devices and Applications of CAS, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China |
|
|
Abstract In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well (MQW) structures, the electroluminescence (EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection, and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point. The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.
|
Received: 18 November 2019
Revised: 16 December 2019
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
73.21.Fg
|
(Quantum wells)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0400803 and 2016YFB0401801) and the National Natural Science Foundation of China (Grant Nos. 61674138, 61674139, 61604145, 61574135, and 61574134). |
Corresponding Authors:
De-Gang Zhao
E-mail: dgzhao@red.semi.ac.cn
|
Cite this article:
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群) Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift 2020 Chin. Phys. B 29 034206
|
[1] |
Nakamura S 1997 Solid State Commun. 102 237
|
[2] |
Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
|
[3] |
Cho J, Schubert E F and Kim J K 2013 Laser Photon. Rev. 7 408
|
[4] |
Fujiwara K, Jimi H and Kaneda K 2009 Phys. Status Solidi C 6 S814
|
[5] |
Wang J X, Wang L, Zhao W, Hao Z B and Luo Y 2010 Appl. Phys. Lett. 97 201112
|
[6] |
Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G and Zanoni E 2013 J. Appl. Phys. 114 071101
|
[7] |
Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
|
[8] |
Xu J R, Schubert M F, Noemaun A N, Zhu D, Kim J K, Schubert E F, Kim M H, Chung H J, Yoon S, Sone C and Park Y 2009 Appl. Phys. Lett. 94 011113
|
[9] |
Wang C H, Chen J R, Chiu C H, Kuo H C, Li Y L, Lu T C and Wang S C 2010 IEEE Photon. Technol. Lett. 22 236
|
[10] |
Maier M, Köhler K, Kunzer M, Pletschen W and Wagner 2009 J. Appl. Phys. Lett. 94 041103
|
[11] |
Schubert M F and Schubert E F 2010 Appl. Phys. Lett. 96 131102
|
[12] |
Romanov A E, Baker T J, Nakamura S, Speck J S and Group E U 2006 J. Appl. Phys. 100 023522
|
[13] |
Ling S C, Lu T C, Chang S P, Chen J R, Kuo H C and Wang S C 2010 Appl. Phys. Lett. 96 231101
|
[14] |
Rishinaramangalam A K, Nami M, Fairchild M N, Shima D M, Balakrishnan G, Brueck S R J and Feezell D F 2016 Appl. Phys. Express 9 032101
|
[15] |
Xu J R, Schubert M F, Zhu D, Cho J, Schubert E F, Shim H and Sone C 2011 Appl. Phys. Lett. 99 041105
|
[16] |
Lee J H, Kim N S, Lee D Y and Lee J H 2009 IEEE Photon. Technol. Lett. 21 1151
|
[17] |
Tawfik W Z, Hyeon G Y and Lee J K 2014 J. Appl. Phys. 116 164503
|
[18] |
Li X, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Yang J, Liu W, He X G, Li X J, Liang F, Zhang L Q, Liu J P and Yang H 2016 Phys. Status Solidi A 213 2223
|
[19] |
Le L C, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Yang J, Li X J, He X G, Liu J P, Zhang S M and Yang H 2015 J. Vac. Sci. Technol. B 33 011209
|
[20] |
Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He X G, Wang H, Zhu J J, Zhang S M, Zhang B S and Yang H 2013 Chin. Phys. B 22 098801
|
[21] |
Chen P, Feng M X, Jiang D S, Zhao D G, Liu Z S, Li L, Wu L L, Le L C, Zhu J J, Wang H, Zhang S M and Yang H 2012 J. Appl. Phys. 112 113105
|
[22] |
Wang T, Bai J, Sakai S and Ho J K 2001 Appl. Phys. Lett. 78 2617
|
[23] |
Wang T, Nakagawa D, Wang J, Sugahara T and Sakai S 1998 Appl. Phys. Lett. 73 3571
|
[24] |
Lai Y L, Liu C P, Lin Y H, Hsueh T H, Lin R M, Lyu D Y, Peng Z X and Lin T Y 2006 Nanotechnology 17 3734
|
[25] |
Yamashita Y, Tamura H, Horio N, Sato H, Taniguchi K, Chinone T, Omori S and Funaoka C 2003 Jpn. J. Appl. Phys. 42 4197
|
[26] |
Piprek J 2003 Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (San Diego: Academic Press) pp. 54-56
|
[27] |
Jho Y D, Yahng J S, Oh E and Kim D S 2002 Phys. Rev. B 66 035334
|
[28] |
Sizov D S, Bhat R, Zakharian A, Song K C, Allen D E, Coleman S and Zah C E 2011 IEEE J. Sel. Top. Quantum Electron. 17 1390
|
[29] |
Bochkareva N I, Bogatov A L, Gorbunov R I, Latyshev F E, Zubrilov A S, Tsyuk A I, Klochkov A V, Lelikov Y S, Rebane Y T and Shreter Y G 2009 Semiconductors 43 1499
|
[30] |
Tsai P C, Chuang R W and Su Y K 2007 J. Lightwave Technol. 25 591
|
[31] |
Shhajed S, Xi Y, Li Y L, Gessmann Th and Schubert E F 2005 J. Appl. Phys. 97 054506
|
[32] |
Efremov A A, Bochkareva N I, Gorbunov R I, Lavrinovich D A, Rebane Y T, Tarkhin D V and Shreter Y G 2006 Semiconductors 40 605
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|