Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 127202    DOI: 10.1088/1674-1056/ab53d0
RAPID COMMUNICATION Prev   Next  

Electrically tunable spin diode effect in a tunneling junction of quantum dot

Xukai Peng(彭许凯)1, Zhengzhong Zhang(张正中)2
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
2 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China
Abstract  Control over the tunneling current in spintronic devices by electrical methods is an interesting topic, which is experiencing a burst of activity. In this paper, we theoretically investigate the transport property of electrons in a spin-diode structure consisting of a single quantum dot (QD) weakly coupled to one nonmagnetic (NM) and one half-metallic ferromagnet (HFM) leads, in which the QD has an artificial atomic nature. By modulating the gate voltage applied on the dot, we observe a pronounced decrease in the current for one bias direction. We show that this rectification is spin-dependent, which stems from the interplay between the spin accumulation and the Coulomb blockade on the quantum dot. The degree of such spin diode behavior is fully and precisely tunable using the gate and bias voltages. The present device can be realized within current technologies and has potential application in molecular spintronics and quantum information processing.
Keywords:  half-metallic ferromagnet      quantum dots      spin blockade      spin dependent electron tunneling  
Received:  31 October 2019      Accepted manuscript online: 
PACS:  72.25.-b (Spin polarized transport)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  85.80.Lp (Magnetothermal devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404322, 31400810, and 11704180), the Postdoctoral Science Foundation of China (Grant No. 2013M541635), and the Postdoctoral Science Foundation of Jiangsu Province, China (Grant No. 1301018B).
Corresponding Authors:  Zhengzhong Zhang     E-mail:  zeikeezhang@163.com

Cite this article: 

Xukai Peng(彭许凯), Zhengzhong Zhang(张正中) Electrically tunable spin diode effect in a tunneling junction of quantum dot 2019 Chin. Phys. B 28 127202

[1] Godfrin C, Ferhat A, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W and Balestro F 2017 Phys. Rev. Lett. 119 187702
[2] Gutirrez C, Walkup D, Ghahari F, et al. 2018 Science 361 789
[3] Denis C, Pawe S, Silas H, Daniel L and Jelena K 2018 Phys. Rev. B 97 045404
[4] Huthmacher L, Stockill R, Clarke E, Hugues M, Le Gall C and Atatre M 2018 Phys. Rev. B 97 241413
[5] Tang G M, Zhang L and Wang J 2018 Phys. Rev. B 97 224311
[6] Donsa S, Andergassen S and Held K 2014 Phys. Rev. B 89 125103
[7] Chorley S J, Galpin M R, Jayatilaka F W, Smith C G, Logan D E and Buitelaar M R 2012 Phys. Rev. Lett. 109 156804
[8] Rudzinski W and Barnas J 2001 Phys. Rev. B 64 085318
[9] Kuo W and Chen C D 2002 Phys. Rev. B 65 104427
[10] Gergs N M, Bender S A, Duine R A and Schuricht D 2018 Phys. Rev. Lett. 120 017701
[11] Christopher A M and Nina M 2008 Phys. Rev. Lett. 100 156601
[12] Hamaya K, Kitabatake M, Shibata K, Jung M, Ishida S, Taniyama T, Hirakawa K, Arakawa Y and Machida T 2009 Phys. Rev. Lett. 102 236806
[13] Szabolcs C, Ireneusz W and Gergely Z 2012 Nanoscale 4 3635
[14] de Groot R A, Mueller F M, Van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[15] Katsnelson M I, Irkhin V Y, Chioncel L, Lichtenstein A I and de Groot R A 2008 Rev. Mod. Phys. 80 315
[16] Hashmi A, Farooq M U, Hu T and Hong J 2015 J. Phys. Chem. C 119 1859
[17] Smogunov A and Dappe Y J 2015 Nano Lett. 15 3552
[18] Gao G Y and Yao K L 2014 Appl. Phys. Lett. 105 182405
[19] Qi F H, Ying Y B and Jin G J 2011 Phys. Rev. B 83 075310
[20] Yonatan D and Massimiliano Di V 2009 Phys. Rev. B 79 081302
[21] Misiorny M, Weymann I and Barnas J 2010 Europhys. Lett. 89 18003
[22] Balachandran V, Benenti G, Pereira E, Casati G and Poletti D 2018 Phys. Rev. Lett 120 200603
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[11] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[12] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[13] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[14] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[15] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
No Suggested Reading articles found!