Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107101    DOI: 10.1088/1674-1056/ab3b53
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic properties of size-dependent MoTe2/WTe2 heterostructure

Jing Liu(刘婧)1, Ya-Qiang Ma(马亚强)1, Ya-Wei Dai(戴雅薇)2, Yang Chen(陈炀)1, Yi Li(李依)1, Ya-Nan Tang(唐亚楠)3, Xian-Qi Dai(戴宪起)1
1 College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China;
2 Physics Department, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
3 School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
Abstract  

Lateral two-dimensional (2D) heterostructures have opened up unprecedented opportunities in modern electronic device and material science. In this work, electronic properties of size-dependent MoTe2/WTe2 lateral heterostructures (LHSs) are investigated through the first-principles density functional calculations. The constructed periodic multi-interfaces patterns can also be defined as superlattice structures. Consequently, the direct band gap character remains in all considered LHSs without any external modulation, while the gap size changes within little difference range with the building blocks increasing due to the perfect lattice matching. The location of the conduction band minimum (CBM) and the valence band maximum (VBM) will change from P-point to Γ-point when m plus n is a multiple of 3 for A-mn LHSs as a result of Brillouin zone folding. The bandgap located at high symmetry Γ-point is favourable to electron transition, which might be useful to optoelectronic device and could be achieved by band engineering. Type-Ⅱ band alignment occurs in the MoTe2/WTe2 LHSs, for electrons and holes are separated on the opposite domains, which would reduce the recombination rate of the charge carriers and facilitate the quantum efficiency. Moreover, external biaxial strain leads to efficient bandgap engineering. MoTe2/WTe2 LHSs could serve as potential candidate materials for next-generation electronic devices.

Keywords:  first-principles calculations      electronic structures      MoTe2/WTe2 superlattice      strain effects  
Received:  01 May 2019      Revised:  03 August 2019      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61674053 and 11881240254), the Natural Science Foundation of Henan Province, China (Grant No. 162300410325), the Key Young Teachers of Henan Province, China (Grant No. 2017GGJS179), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT030).

Corresponding Authors:  Ya-Qiang Ma, Xian-Qi Dai     E-mail:  mayaqiang@htu.edu.cn;xqdai@htu.edu.cn

Cite this article: 

Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起) Electronic properties of size-dependent MoTe2/WTe2 heterostructure 2019 Chin. Phys. B 28 107101

[41] Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W, Wu Z and Tang W 2018 Carbon 129 738
[1] Modarresi M, Mogulkoc A, Mogulkoc Y and Rudenko 2019 Phys. Rev. Appl. 11 064015
[42] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
[2] Lim H, Yoon S I, Kim G, Jang A and Shin H S 2014 Chem. Mater. 26 4891
[43] Sun Q, Dai Y, Ma Y, Yin N, Wei W, Yu L and Huang B 2016 2D Mater. 3 035017
[3] Müller A, Şahin C, Minhas M Z, Fuhrmann B, Flatté M E and Schmidt G 2019 Phys. Rev. Appl. 11 064026
[44] Wang Y, Wang Q, Zhan X, Wang F, Safdar M and He J 2013 Nanoscale 5 8326
[4] Yang N, Chen X and Wang Y 2018 Acta Phys. Sin. 67 157508 (in Chinese)
[45] Amin B, Singh N and Schwingenschlögl U 2015 Phys. Rev. B 92 075439
[5] Huang C, Wu S, Sanchez A M, Peters J, Beanl, R, Ross J S, Rivera P, Yao W, Cobden D H and Xu X 2014 Nat. Mater. 13 1096
[46] Wang G, Lin Y, Zhao Y, Jiang Z and Zhang X 2018 Acta Phys. Sin. 67 233101 (in Chinese)
[6] Sun Q, Dai Y, Yin N, Yu L, Ma Y, Wei W and Huang B 2017 Nano Res. 10 3909
[47] Luo K, Chen S Y and Duan C G 2015 Sci. China-Phys. Mech. Astron. 58 087301
[7] Chhowalla M, Shin H S, Eda G, Li L, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[48] Wei W, Dai Y and Huang B 2017 Phys. Chem. Chem. Phys. 19 663
[8] Zong X, Yan H, Wu G, Ma G, Wen F, Wang L and Li C 2008 J. Am. Chem. Soc. 130 7176
[49] Liu J, Ma Y, Zhao M, Li Y, Dai X and Tang Y 2018 J. Mater. Sci. 53 5114
[9] Shi Y, Li H and Li L J 2015 Chem. Soc. Rev. 44 2744
[10] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Bol, J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, Mccomb D W, Nellist P D and Nicolosi V 2011 Science 331 568
[11] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111
[12] Yang D and Frindt R F 1996 J. Phys. Chem. Solids 57 1113
[13] Geim A K and Grigorieva I V 2013 Nature 499 419
[14] Tan C and Zhang H 2015 J. Am. Chem. Soc. 137 12162
[15] Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A and Park J 2012 Nature 488 627
[16] Han G H, Rodríguez-manzo J A, Lee C W, Kybert N J, Lerner M B, Qi Z J, Dattoli E N, Rappe A M, Drndic M and Johnson A T C 2013 ACS Nano 7 10129
[17] Miyata Y, Maeda E, Kamon K, Kitaura R, Sasaki, Suzuki S and Shinohara H 2010 Mater. Sci. Eng. B 174 257
[18] Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu, X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y and Duan X 2014 Nat. Nanotechnol. 9 1024
[19] Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K and Li L J 2015 Science 349 524
[20] Duesberg G S 2014 Nat. Mater. 13 1075
[21] Selcuk S and Selloni A 2016 Nat. Mater. 15 1107
[22] Yu J, Low J, Xiao W, Zhou P and Jaroniec M 2014 J. Am. Chem. Soc. 136 8839
[23] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[24] Jariwala D, Sangwan V K, Lauhon L J Marks T J and Hersam M C 2014 ACS Nano 8 1102
[25] Dawson W G and Bullett D W 1987 J. Phys. C: Solid State Phys. 20 6159
[26] Huang H, Fan X, Singh D J, Chen H, Jiang Q and Zheng W 2016 Phys. Chem. Chem. Phys. 18 4086
[27] C S K, Zhang C, Hong S, Wallace R M and Cho K 2015 2D Mater. 2 035019
[28] Zhu C, Sun X, Liu H, Zheng B, Wang X, Liu Y, Zubair M, Wang X, Zhu X, Li D and Pan A 2019 ACS Nano 13 7216
[29] Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W and Ajayan P M 2014 Nat. Mater. 13 1135
[30] Wei W, Dai Y, Sun Q, Yin N, Han S, Huang B and Jacob T 2015 Phys. Chem. Chem. Phys. 17 29380
[31] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[32] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[33] Zhang Y and Yang W 1998 Phys. Rev. Lett. 80 890
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Pack J D and Monkhorst H J 1976 Phys. Rev. B 13 5188
[39] Wang T G, Tang G, Rubel O 2014 VASPKIT, a pre- and post-processing program for the VASP code
[40] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[41] Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W, Wu Z and Tang W 2018 Carbon 129 738
[42] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
[43] Sun Q, Dai Y, Ma Y, Yin N, Wei W, Yu L and Huang B 2016 2D Mater. 3 035017
[44] Wang Y, Wang Q, Zhan X, Wang F, Safdar M and He J 2013 Nanoscale 5 8326
[45] Amin B, Singh N and Schwingenschlögl U 2015 Phys. Rev. B 92 075439
[46] Wang G, Lin Y, Zhao Y, Jiang Z and Zhang X 2018 Acta Phys. Sin. 67 233101 (in Chinese)
[47] Luo K, Chen S Y and Duan C G 2015 Sci. China-Phys. Mech. Astron. 58 087301
[48] Wei W, Dai Y and Huang B 2017 Phys. Chem. Chem. Phys. 19 663
[49] Liu J, Ma Y, Zhao M, Li Y, Dai X and Tang Y 2018 J. Mater. Sci. 53 5114
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[10] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[11] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[12] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[13] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[14] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[15] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
No Suggested Reading articles found!