CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic properties of size-dependent MoTe2/WTe2 heterostructure |
Jing Liu(刘婧)1, Ya-Qiang Ma(马亚强)1, Ya-Wei Dai(戴雅薇)2, Yang Chen(陈炀)1, Yi Li(李依)1, Ya-Nan Tang(唐亚楠)3, Xian-Qi Dai(戴宪起)1 |
1 College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China;
2 Physics Department, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
3 School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China |
|
|
Abstract Lateral two-dimensional (2D) heterostructures have opened up unprecedented opportunities in modern electronic device and material science. In this work, electronic properties of size-dependent MoTe2/WTe2 lateral heterostructures (LHSs) are investigated through the first-principles density functional calculations. The constructed periodic multi-interfaces patterns can also be defined as superlattice structures. Consequently, the direct band gap character remains in all considered LHSs without any external modulation, while the gap size changes within little difference range with the building blocks increasing due to the perfect lattice matching. The location of the conduction band minimum (CBM) and the valence band maximum (VBM) will change from P-point to Γ-point when m plus n is a multiple of 3 for A-mn LHSs as a result of Brillouin zone folding. The bandgap located at high symmetry Γ-point is favourable to electron transition, which might be useful to optoelectronic device and could be achieved by band engineering. Type-Ⅱ band alignment occurs in the MoTe2/WTe2 LHSs, for electrons and holes are separated on the opposite domains, which would reduce the recombination rate of the charge carriers and facilitate the quantum efficiency. Moreover, external biaxial strain leads to efficient bandgap engineering. MoTe2/WTe2 LHSs could serve as potential candidate materials for next-generation electronic devices.
|
Received: 01 May 2019
Revised: 03 August 2019
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674053 and 11881240254), the Natural Science Foundation of Henan Province, China (Grant No. 162300410325), the Key Young Teachers of Henan Province, China (Grant No. 2017GGJS179), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT030). |
Corresponding Authors:
Ya-Qiang Ma, Xian-Qi Dai
E-mail: mayaqiang@htu.edu.cn;xqdai@htu.edu.cn
|
Cite this article:
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起) Electronic properties of size-dependent MoTe2/WTe2 heterostructure 2019 Chin. Phys. B 28 107101
|
[41] |
Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W, Wu Z and Tang W 2018 Carbon 129 738
|
[1] |
Modarresi M, Mogulkoc A, Mogulkoc Y and Rudenko 2019 Phys. Rev. Appl. 11 064015
|
[42] |
Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
|
[2] |
Lim H, Yoon S I, Kim G, Jang A and Shin H S 2014 Chem. Mater. 26 4891
|
[43] |
Sun Q, Dai Y, Ma Y, Yin N, Wei W, Yu L and Huang B 2016 2D Mater. 3 035017
|
[3] |
Müller A, Şahin C, Minhas M Z, Fuhrmann B, Flatté M E and Schmidt G 2019 Phys. Rev. Appl. 11 064026
|
[44] |
Wang Y, Wang Q, Zhan X, Wang F, Safdar M and He J 2013 Nanoscale 5 8326
|
[4] |
Yang N, Chen X and Wang Y 2018 Acta Phys. Sin. 67 157508 (in Chinese)
|
[45] |
Amin B, Singh N and Schwingenschlögl U 2015 Phys. Rev. B 92 075439
|
[5] |
Huang C, Wu S, Sanchez A M, Peters J, Beanl, R, Ross J S, Rivera P, Yao W, Cobden D H and Xu X 2014 Nat. Mater. 13 1096
|
[46] |
Wang G, Lin Y, Zhao Y, Jiang Z and Zhang X 2018 Acta Phys. Sin. 67 233101 (in Chinese)
|
[6] |
Sun Q, Dai Y, Yin N, Yu L, Ma Y, Wei W and Huang B 2017 Nano Res. 10 3909
|
[47] |
Luo K, Chen S Y and Duan C G 2015 Sci. China-Phys. Mech. Astron. 58 087301
|
[7] |
Chhowalla M, Shin H S, Eda G, Li L, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[48] |
Wei W, Dai Y and Huang B 2017 Phys. Chem. Chem. Phys. 19 663
|
[8] |
Zong X, Yan H, Wu G, Ma G, Wen F, Wang L and Li C 2008 J. Am. Chem. Soc. 130 7176
|
[49] |
Liu J, Ma Y, Zhao M, Li Y, Dai X and Tang Y 2018 J. Mater. Sci. 53 5114
|
[9] |
Shi Y, Li H and Li L J 2015 Chem. Soc. Rev. 44 2744
|
[10] |
Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Bol, J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, Mccomb D W, Nellist P D and Nicolosi V 2011 Science 331 568
|
[11] |
Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111
|
[12] |
Yang D and Frindt R F 1996 J. Phys. Chem. Solids 57 1113
|
[13] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[14] |
Tan C and Zhang H 2015 J. Am. Chem. Soc. 137 12162
|
[15] |
Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A and Park J 2012 Nature 488 627
|
[16] |
Han G H, Rodríguez-manzo J A, Lee C W, Kybert N J, Lerner M B, Qi Z J, Dattoli E N, Rappe A M, Drndic M and Johnson A T C 2013 ACS Nano 7 10129
|
[17] |
Miyata Y, Maeda E, Kamon K, Kitaura R, Sasaki, Suzuki S and Shinohara H 2010 Mater. Sci. Eng. B 174 257
|
[18] |
Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu, X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y and Duan X 2014 Nat. Nanotechnol. 9 1024
|
[19] |
Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K and Li L J 2015 Science 349 524
|
[20] |
Duesberg G S 2014 Nat. Mater. 13 1075
|
[21] |
Selcuk S and Selloni A 2016 Nat. Mater. 15 1107
|
[22] |
Yu J, Low J, Xiao W, Zhou P and Jaroniec M 2014 J. Am. Chem. Soc. 136 8839
|
[23] |
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
|
[24] |
Jariwala D, Sangwan V K, Lauhon L J Marks T J and Hersam M C 2014 ACS Nano 8 1102
|
[25] |
Dawson W G and Bullett D W 1987 J. Phys. C: Solid State Phys. 20 6159
|
[26] |
Huang H, Fan X, Singh D J, Chen H, Jiang Q and Zheng W 2016 Phys. Chem. Chem. Phys. 18 4086
|
[27] |
C S K, Zhang C, Hong S, Wallace R M and Cho K 2015 2D Mater. 2 035019
|
[28] |
Zhu C, Sun X, Liu H, Zheng B, Wang X, Liu Y, Zubair M, Wang X, Zhu X, Li D and Pan A 2019 ACS Nano 13 7216
|
[29] |
Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W and Ajayan P M 2014 Nat. Mater. 13 1135
|
[30] |
Wei W, Dai Y, Sun Q, Yin N, Han S, Huang B and Jacob T 2015 Phys. Chem. Chem. Phys. 17 29380
|
[31] |
Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
|
[32] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[33] |
Zhang Y and Yang W 1998 Phys. Rev. Lett. 80 890
|
[34] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[35] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[36] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[37] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[38] |
Pack J D and Monkhorst H J 1976 Phys. Rev. B 13 5188
|
[39] |
Wang T G, Tang G, Rubel O 2014 VASPKIT, a pre- and post-processing program for the VASP code
|
[40] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[41] |
Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W, Wu Z and Tang W 2018 Carbon 129 738
|
[42] |
Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
|
[43] |
Sun Q, Dai Y, Ma Y, Yin N, Wei W, Yu L and Huang B 2016 2D Mater. 3 035017
|
[44] |
Wang Y, Wang Q, Zhan X, Wang F, Safdar M and He J 2013 Nanoscale 5 8326
|
[45] |
Amin B, Singh N and Schwingenschlögl U 2015 Phys. Rev. B 92 075439
|
[46] |
Wang G, Lin Y, Zhao Y, Jiang Z and Zhang X 2018 Acta Phys. Sin. 67 233101 (in Chinese)
|
[47] |
Luo K, Chen S Y and Duan C G 2015 Sci. China-Phys. Mech. Astron. 58 087301
|
[48] |
Wei W, Dai Y and Huang B 2017 Phys. Chem. Chem. Phys. 19 663
|
[49] |
Liu J, Ma Y, Zhao M, Li Y, Dai X and Tang Y 2018 J. Mater. Sci. 53 5114
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|