Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107102    DOI: 10.1088/1674-1056/ab4279
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions

Hai-Di Liu(刘海迪)
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  

We study magnetic and Mott transitions of the Hubbard model on the geometrically frustrated anisotropic checkerboard lattice at half filling using cellular dynamical mean-field theory. Phase diagrams over a wide area of the parameter space are obtained by varying the interparticle interaction strength, geometric frustration strength, and temperature. Our results show that frustration and thermal fluctuations play a competing role against the interactions and in general favor a metallic phase without antiferromagnetic order. Due to their interplay, the system exhibits competition between antiferromagnetic insulator, antiferromagnetic metal, paramagnetic insulator, and paramagnetic metal phases in the intermediate-interaction regime. In the strong-interaction limit, which reduces to the Heisenberg model, our result is consistent with previous studies.

Keywords:  geometrical frustration      checkerboard lattice      Hubbard model  
Received:  11 June 2019      Revised:  05 August 2019      Accepted manuscript online: 
PACS:  71.10.-w (Theories and models of many-electron systems)  
  05.30.Rt (Quantum phase transitions)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Corresponding Authors:  Hai-Di Liu     E-mail:  hdliu@wipm.ac.cn

Cite this article: 

Hai-Di Liu(刘海迪) Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions 2019 Chin. Phys. B 28 107102

[41] Yoshioka T, Koga A and Kawakami N 2009 Phys. Rev. Lett. 103 036401
[1] Hagemann I S, Huang Q, Gao X P A, Ramirez A P and Cava R J 2001 Phys. Rev. Lett. 86 894
[2] Fujimoto S 2002 Phys. Rev. Lett. 89 226402
[3] Kimura T, Kuroki K, Arita R and Aoki H 2004 Phys. Rev. B 69 054501
[4] Ohashi T, Momoi T, Tsunetsugu H, and Kawakami N 2008 Phys. Rev. Lett. 100 076402
[5] Takeda T, Nagata M, Kobayashi H, Kanno R, Kawamoto Y, Takano M, Kamiyama T, Izumi F and Sleight A W 1998 J. Solid State Chem. 140 182
[6] Sakai H, Kato M, Yoshimura K and Kosuge K 2002 J. Phys. Soc. Jpn. 71, 422
[7] Kondo S, Johnston D C, Swenson C A, Borsa F, Mahajan A V, Miller L L, Gu T, Goldman A I, Maple M B, Gajewski D A, Freeman E J, Dilley N R, Dickey R P, Merrin J, Kojima K, Luke G M, Uemura Y J, Chmaissem O and Jorgensen J D 1997 Phys. Rev. Lett. 78 3729
[8] Parcollet O, Biroli G and Kotliar G 2004 Phys. Rev. Lett. 92 226402
[9] Ohashi T, Kawakami N and Tsunetsugu H 2006 Phys. Rev. Lett. 97 066401
[10] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[11] Dagotto E 1994 Rev. Mod. Phys. 66, 763
[12] Rohringer G, Hafermann H, Toschi A, Katanin A A, Antipov A E, Katsnelson M I, Lichtenstein A I, Rubtsov A. N and Held K 2018 Rev. Mod. Phys. 90 025003
[13] Shimizu Y, Miyagawa K, Kanoda K, Maesato M and Saito G 2003 Phys. Rev. Lett. 91 107001
[14] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[15] Nisoli C, Moessner R and Schiffer P 2013 Rev. Mod. Phys. 85, 1473
[16] Xu Y, Xiong Z, Wu H Q and Yao D X 2019 Phys. Rev. B 99 085112
[17] Zeng T S, Zhu W and Sheng D 2018 npj Quantum Materials 3 49
[18] Wu H Q, He Y Y, Fang C, Meng Z Y and Lu Z Y 2016 Phys. Rev. Lett.117, 066403
[19] Moessner R and Chalker J T 1998 Phys. Rev. B 58, 12049
[20] Berg E, Altman E and Auerbach A 2003 Phys. Rev. Lett. 90 147204
[21] Moukouri S 2008 Phys. Rev. B 77, 052408
[22] Lieb E H and Schupp P 1999 Phys. Rev. Lett. 83, 5362
[23] Berg E, Altman E and Auerbach A 2004 Phys. Rev. Lett. 90, 147204
[24] Capponi B 2017 Phys. Rev. B 95, 014420
[25] Morita K and Shibata N 2016 Phys. Rev. B 94, 140404(R)
[26] Brenig W and Grzeschik M 2004 Phys. Rev. B 69, 064420
[27] Pollmann F, Betouras J J, Shtengel K and Fulde P 2006 Phys. Rev. Lett. 97 170407
[28] Yoshioka T, Koga A and Kawakami N 2008 J. Phys. Soc. Jpn. 77 104702
[29] Swain N and Majumdar P 2017 J. Phys.: Condens. Matter 29 085603
[30] Yoshioka T, Koga A and Kawakami N 2008 Phys. Rev. B 78 165113
[31] Isoda M and Mori S 2000 J. Phys. Soc. Jpn. 69 1509
[32] Fujimoto S 2001 Phys. Rev. B 64 085102
[33] Kotliar G, Savrasov S Y, Palsson G and Biroli G 2001 Phys. Rev. Lett. 87 186401
[34] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
[35] Park H, Haule K and Kotliar G 2008 Phys. Rev. Lett. 101 186403
[36] Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349
[37] Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
[38] Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133
[39] Imai Y and Kawakami N 2002 Phys. Rev. B 65 233103
[40] Huscroft C, Jarrell M, Maier T, Moukouri S and Tahvildarzadeh A N 2001 Phys. Rev. Lett. 86 139
[41] Yoshioka T, Koga A and Kawakami N 2009 Phys. Rev. Lett. 103 036401
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Spin freezing in the van der Waals material Mn2Ga2S5
Jie Shen(沈洁), Xitong Xu(许锡童), Miao He(何苗), Yonglai Liu(刘永来), Yuyan Han(韩玉岩), and Zhe Qu(屈哲). Chin. Phys. B, 2022, 31(6): 067105.
[3] Relevance of 3d multiplet structure in nickelate and cuprate superconductors
Mi Jiang(蒋密). Chin. Phys. B, 2021, 30(10): 107103.
[4] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[5] Slater determinant and exact eigenstates of the two-dimensional Fermi-Hubbard model
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2018, 27(7): 073102.
[6] Off-site trimer superfluid on a one-dimensional optical lattice
Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟). Chin. Phys. B, 2017, 26(4): 043701.
[7] Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting
Yilin Wang(王义林), Li Huang(黄理), Liang Du(杜亮), Xi Dai(戴希). Chin. Phys. B, 2016, 25(3): 037103.
[8] Phase diagram of the Fermi–Hubbard model with spin-dependent external potentials: A DMRG study
Wei Xing-Bo (魏兴波), Meng Ye-Ming (孟烨铭), Wu Zhe-Ming (吴哲明), Gao Xian-Long (高先龙). Chin. Phys. B, 2015, 24(11): 117101.
[9] Disappearance of the Dirac cone in silicene due to the presence of an electric field
D. A. Rowlands, Zhang Yu-Zhong (张宇钟). Chin. Phys. B, 2014, 23(3): 037101.
[10] Extended Bose–Hubbard model with pair hopping on triangular lattice
Wang Yan-Cheng (王艳成), Zhang Wan-Zhou (张万舟), Shao Hui (邵慧), Guo Wen-An (郭文安). Chin. Phys. B, 2013, 22(9): 096702.
[11] Effects of effective attractive multi-body interaction on quantum phase and transport dynamics of a strongly correlated bosonic gas across the superfluid to Mott insulator transition
Sun Jian-Fang (孙剑芳), Cui Guo-Dong (崔国栋), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(11): 110307.
[12] Alternative routes to equivalent classical models of a quantum system
M. Radonjić, Slobodan Prvanović, Nikola Burić. Chin. Phys. B, 2012, 21(12): 120301.
[13] Effective Bose–Hubbard interaction with enhanced nonlinearity in an array of coupled cavities
Zhou Ling(周玲), Liu Zhong-Ju(刘忠菊), Yan Wei-Bin(闫伟斌), and Mu Qing-Xia(穆青霞). Chin. Phys. B, 2011, 20(7): 074205.
[14] Raman and mid-infrared spectroscopic study of geometrically frustrated hydroxyl cobalt halides at room temperature
Liu Xiao-Dong(刘晓东), Meng Dong-Dong(孟冬冬), Hagihala Masato(萩原雅人), Zheng Xu-Guang(郑旭光), and Guo Qi-Xin(郭其新) . Chin. Phys. B, 2011, 20(7): 077801.
[15] Quantum phase transition and von Neumann entropy of quasiperiodic Hubbard chains
Zhu Xuan(朱璇) and Tong Pei-Qing(童培庆). Chin. Phys. B, 2008, 17(5): 1623-1628.
No Suggested Reading articles found!