CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds |
X F Wu(武小飞)1,2,3, C P Guo(郭翠萍)1, G Cheng(成钢)2,3, C R Li(李长荣)1, J Wang(王江)2,3, Y S Du(杜玉松)2,3, G H Rao(饶光辉)2,3, Z M Du(杜振民)1 |
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
3 Guangxi Key Laboratory of Information Materials, Guilin 541004, China |
|
|
Abstract The crystal structure, magnetic and magnetocaloric properties of (Ho1-xYx)5Pd2 (x=0, 0.25, and 0.5) compounds are investigated. All the compounds crystallize in a cubic Dy5Pd2-type structure with the space group Fd3m and undergo a second order transition from spin glass (SG) state to paramagnetic (PM) state. The spin glass transition temperatures Tg decrease from 26 K for x=0 to 13 K for x=0.5. In the PM region, the reciprocal susceptibilities for all the compounds obey the Curie-Weiss law. The paramagnetic Curie temperatures (θp) for Ho5Pd2, (Ho0.75Y0.25)5Pd2, and (Ho0.5Y0.5)5Pd2 are determined to be 32 K, 30 K, and 22 K, respectively, and the corresponding effective magnetic moments (μeff) are 10.8 μB/Ho, 10.3 μB/RE, and 7.5 μB/RE, respectively. Magnetocaloric effect (MCE) is anticipated according to the Maxwell relation, based on the isothermal magnetization curves. For a magnetic field change of 0-5 T, the maximum values of the isothermal magnetic entropy change -ΔSM of the (Ho1-xYx)5Pd2 (x=0, 0.25, and 0.5) compounds are determined to be 11.5 J·kg-1·K-1, 11.1 J·kg-1·K-1, and 8.9 K J·kg-1·K-1, with corresponding refrigerant capacity values of 382.3 J·kg-1, 336.2 J·kg-1, and 242.5 J·kg-1, respectively.
|
Received: 26 December 2018
Revised: 09 February 2019
Accepted manuscript online:
|
PACS:
|
71.20.Eh
|
(Rare earth metals and alloys)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB643703), the National Key Research and Development Program of China (Grant No. 2016YFB0700901), the National Natural Science Foundation of China (Grant Nos. 51261004 and 51761007), and Guangxi Natural Science Foundation, China (Grant No. 2018GXNSFAA294051). |
Corresponding Authors:
C P Guo, Y S Du
E-mail: cpguo@ustb.edu.cn;duyusong@guet.edu.cn
|
Cite this article:
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民) Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds 2019 Chin. Phys. B 28 057502
|
[1] |
Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
|
[2] |
Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
|
[3] |
Brück E 2005 J. Phys. D: Appl. Phys. 38 R381
|
[4] |
de Oliveira N A and Von Ranke P J 2010 Phys. Rep. 489 89
|
[5] |
Pecharsky V K and Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44
|
[6] |
Pecharsky V K and Gschneidner Jr K A 2001 J. Appl. Phys. 90 4614
|
[7] |
Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853
|
[8] |
Shen J, Gao B, Zhang H W, Hu F X, Li Y X, Sun J R and Shen B G 2007 Appl. Phys. Lett. 91 142504
|
[9] |
Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
|
[10] |
Gschneidner Jr K A 2009 Acta Mater. 57 18
|
[11] |
Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
|
[12] |
Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 0550
|
[13] |
Zhang X X, Wen G H, Wang F W, Wang W H, Yu C H and Wu G H 2000 Appl. Phys. Lett. 77 3072
|
[14] |
Zhang X X, Wang F W and Wen G H 2001 J. Phys.: Condens. Matter 13 L747
|
[15] |
Tegus O, Brück E, Buschow K H J and De Boer F R 2002 Nature 415 150
|
[16] |
Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
|
[17] |
Hu F X, Shen B G, Sun J R and Wu G H 2001 Phys. Rev. B 64 132412
|
[18] |
Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mãnosa L and Planes A 2005 Nat. Mater. 4 450
|
[19] |
Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
|
[20] |
Planes A, Mãnosa L and Acet M 2009 J. Phys.: Condens. Matter 21 233201
|
[21] |
Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
|
[22] |
Tishin A M, Spichkin Y I, in: Coey J M D, Tilley D R and Vij D R 2003 The Magnetocaloric Effect and its Applications (Bristol: Institute of Physics Publishing)
|
[23] |
Wada H, Tanabe Y, Shiga M, Sugawara H and Sato H 2001 J. Alloys Compd. 316 245
|
[24] |
Li L W, Yi Y L, Su K P, Qi Y, Huo D X and Pöttgen R 2016 J. Mater. Sci. 51 5421
|
[25] |
Huo J J, Du Y S, Cheng G, Wu X F, Ma L, Wang J, Xia Z C and Rao G H 2018 J. Rare Earth 36 1044
|
[26] |
Chen J, Shen B G, Dong Q Y and Sun J R 2010 Solid State Commun. 150 157
|
[27] |
Wang L C and Shen B G 2014 Rare Met. 33 239
|
[28] |
Chen J, Shen B G, Dong Q Y and Sun J R 2010 Solid State Commun. 150 1429
|
[29] |
Singh N K, Kumar P, Mao Z, Paudyal D, Neu V, Suresh K G, Pecharsky V K and Gschneidner K A 2009 J. Phys.: Condens. Matter 21 456004
|
[30] |
Mo Z J, Shen J, Gao X Q, Liu Y, Wu J F, Shen B G and Sun J R 2015 Chin. Phys. B 24 037503
|
[31] |
Zheng X Q, Shen J, Hu F X, Sun J R and Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)
|
[32] |
Mo Z J, Sun Q L, Wang C H, Wu H Z, Li L, Meng F B, Tang C C, Zhao Y and Shen J 2017 Ceram. Int. 43 2083
|
[33] |
Wang Y X, Zhang H, Wu M L, Tao K, Li Y W, Yan T, Long K W, Long T, Pang Z and Long Y 2016 Chin. Phys. B 25 127104
|
[34] |
Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R and Long Y 2013 Appl. Phys. Lett. 102 092401
|
[35] |
Zhang H, Sun Y J, Yang L H, Niu E, Wang H S, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 115 063901
|
[36] |
Wu M L, Zhang H, Xu Z Y, Wang Y X, Tao K, Zhang Y L, Yan T, Long K W, Li Y W, Shen J Y and Long Y 2017 Intermetallics 83 38
|
[37] |
Wang Y X, Zhang H, Long K W, Xing C F, Xiao Y N, Su L Q, Wang L C and Long Y 2018 Intermetallics 100 175
|
[38] |
Mo Z J, Hao Z H, Shen J, Li L, Wu J F, Hu F X, Sun J R and Shen B G 2015 J. Alloys Compd. 649 674
|
[39] |
Li L W, Xu C, Yuan Y and Zhou S Q 2018 Mater. Res. Lett. 6 413
|
[40] |
Wu M L, Zhang H, Long K W, Tao K, Wang Y X, Xing C F, Xiao Y N, Wang L C and Long Y 2017 Mater. Lett. 205 40
|
[41] |
Zheng X Q and Shen B G 2017 Chin. Phys. B 26 027501
|
[42] |
Li Y W, Zhang H, Yan T, Long K W, Wang H S, Xue Y J, Cheng C and Zhou H B 2015 J. Alloys Compd. 651 278
|
[43] |
Mo Z J, Shen J, Gao X Q, Liu Y, Tang C C, Wu J F, Hu F X, Sun J R and Shen B G 2015 J. Alloys Compd. 626 145
|
[44] |
Li L W, Hu G H, Qi Y and Umehara I 2017 Sci. Rep. 7 42908
|
[45] |
Mo Z J, Shen J, Yan L Q, Wu J F, Wang L C, Lin J, Tang C C and Shen B G 2013 Appl. Phys. Lett. 102 192407
|
[46] |
Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q and Shen B G 2013 Appl. Phys. Lett. 103 052409
|
[47] |
Berkowitz A E, Holtzberg F and Methfessel S 1964 J. Appl. Phys. 35 1030
|
[48] |
Loebich O and Raub J R E 1973 J. Less Common Met. 30 47
|
[49] |
Fornasini M L and Palenzona A 1974 J. Less Common Met. 38 77
|
[50] |
Yakinthos J K, Anagnostopoulos T and Ikonomou P F 1977 J. Less Common Met. 51 113
|
[51] |
Klimczak M, Talik E, Winiarski A and Troć R 2006 J. Alloys Compd. 423 62
|
[52] |
Sharma M K, Yadav K and Mukherjee K 2018 J. Phys.: Condens. Matter 30 215803
|
[53] |
Paramanik T, Samanta T, Ranganathna R and Das I 2015 RSC Adv. 5 47860
|
[54] |
Gubkin A F, A Sherstobitova E, Terentyev P B, Hoser A and Baranov N V 2013 J. Phys.: Condens. Matter 25 236003
|
[55] |
Samanta T, Das I and Banerjee S 2007 Appl. Phys. Lett. 91 082511
|
[56] |
Toyoizumi S, Kitazawa H, Kawamura Y, Mamiya H, Terada N, Tamura R, Dönni A, Morita K and Tamaki A 2015 J. Appl. Phys. 117 17D101
|
[57] |
Mydosh J A 1993 Spin Glasses: an Experimental Introduction (London: Taylor and Francis)
|
[58] |
Sh, P M, Meyer A L, Streicher M, Wilson A, Rash T, Roth M W, Kidd T E and Strauss L H 2012 Phys. Rev. B 85 144432
|
[59] |
McDannald A, Kuna L, Jain M 2013 J. Appl. Phys. 114 113904
|
[60] |
Banerjee B K 1964 Phys. Lett. 12 16
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|