Yield enhancement of elliptical high harmonics driven by bicircular laser pulses
Xiaofan Zhang(张晓凡)1,† and Xiaosong Zhu(祝晓松)2,‡
1 Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; 2 Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract We theoretically investigate the yield enhancement of elliptical high harmonics in the interaction of molecules with bicircular laser pulses by solving the time-dependent Schrödinger equation. It is shown that by adjusting the relative intensity ratio of the two bicircular field components in specific ranges the yield of the molecular high harmonics for the plateau and cutoff regions can be respectively enhanced. To analyze this enhancement phenomenon, we calculate the weights of the electron classical trajectories. Additionally, we also study the ellipticity distribution of harmonics for different intensity ratios. We find that these enhanced harmonics are elliptically polarized, which we mainly attribute to the recombination dipole moment of the major weighted trajectories. These enhanced elliptical extreme ultraviolet and soft x-ray radiations may serve as essential tools for exploring the ultrafast dynamics in magnetic materials and chiral media.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904269), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2021CFB300 and 2020CFB362), and Scientific Research Program of Hubei Provincial Department of Education (Grant No. B2020176).
Xiaofan Zhang(张晓凡) and Xiaosong Zhu(祝晓松) Yield enhancement of elliptical high harmonics driven by bicircular laser pulses 2022 Chin. Phys. B 31 114209
[1] Corkum P B and Krausz F 2007 Nat. Phys.3 381 [2] Corkum P B 1993 Phys. Rev. Lett.71 1994 [3] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S De and Nisoli M 2006 Science314 443 [4] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature432 867 [5] Villeneuve D M, Hockett P, Vrakking M J J and Niikura H 2017 Science356 1150 [6] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R and Saliéres P 2010 Nat. Phys.6 200 [7] Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horny L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F and Wörner H J 2015 Science350 790 [8] Krausz F and Ivanov M 2009 Rev. Mod. Phys.81 163 [9] Zhang W, Alonso-Mori R, Bergmann U, et al. 2014 Nature509 345 [10] Schoenlein R W, Chattopadhyay S, Chong H H W, Glover T E, Heimann P A, Shank C V, Zholents A A and Zolotorev M S 2000 Science287 2237 [11] ?uti? N, Lindau F, Thorin S, Werin S, Bahrdt J, Eberhardt W, Holldack K, Erny C, L'Huillier A and Mansten E 2011 Phys. Rev. ST Accel. Beams14 030706 [12] Allaria E, Appio R, Badano L, et al. 2012 Nat. Photon.6 699 [13] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M and Chang Z 2017 Nat. Commun.8 186 [14] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, ArdanaLamas F and Wörner H J 2017 Opt. Express25 27506 [15] Reich D M and Madsen L B 2016 Phys. Rev. Lett.117 133902 [16] Ferré A, Handschin C, Dumergue M, Burgy F, Comby A, Descamps D, Fabre B, Garcia G A, Géneaux R, Merceron L, Mével E, Nahon L, Petit S, Pons B, Staedter D, Weber S, Ruchon T, Blanchet V and Mairesse Y 2014 Nat. Photonics9 93 [17] Lambert G, Vodungbo B, Gautier J, Mahieu B, Malka V, Sebban S, Zeitoun P, Luning J, Perron J, Andreev A, Stremoukhov S, Ardana-Lamas F, Dax A, Hauri C P, Sardinha A and Fajardo M 2015 Nat. Commun.6 6167 [18] Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing Th and Kime A V 2011 Nature472 205 [19] Huang P C, Hernández-García C, Huang J T, Huang P Y, Lu C H, Rego L, Hickstein D D, Ellis J L, Jaron-Becker A, Becker A, Yang S D, Durfee C G, Plaja L, Kapteyn H C, Murnane M M, Kung A H and Chen M C 2018 Nat. Photonics12 349 [20] Hickstein D D, Dollar F J, Grychtol P, Ellis J L, Knut R, Hernández-García C, Zusin D, Gentry C, Shaw J M, Fan T, Dorney K M, Becker A, Jaroń-Becker A, Kapteyn H C, Murnane M and Durfee C G 2015 Nat. Photonics9 743 [21] Ellis J L, Dorney K M, Hickstein D D, Brooks N J, Gentry C, Hernández-García C, Zusin D, Shaw J M, Nguyen Q L, Mancuso C A, Jansen G S M, Witte S, Kapteyn H C and Murnane M M 2018 Optica5 479 [22] Xie X, Scrinzi A, Wickenhauser M, Baltu?ka A, Barth I and Kitzler M 2008 Phys. Rev. Lett.101 033901 [23] Zhang X F, Zhu X, Liu X, Wang F, Qin M, Liao Q and Lu P 2020 Phys. Rev. A102 033103 [24] Dong F L, Xia Q Z and Liu J 2021 Phys. Rev. A104 033119 [25] Zhou X, Lock R, Wagner N, Li W, Kapteyn H C and Murnane M M 2009 Phys. Rev. Lett.102 073902 [26] Yuan K J and Bandrauk A D 2013 Phys. Rev. Lett.110 023003 [27] Zhai C Y, Shao R Z, Lan P F, Wang B C, Zhang Y F, Yuan H, Njoroge S M, He L X and Lu P X 2020 Phys. Rev. A101 053407 [28] Fleischer A, Kfifir O, Diskin T, Sidorenko P and Cohen O 2014 Nat. Photonics8 543 [29] Milo?evi? D B 2015 Phys. Rev. A92 043827 [30] Baykusheva D, Ahsan M S, Lin N and Wörner H J 2016 Phys. Rev. Lett.116 123001 [31] Mauger F, Bandrauk A D and Uzer T 2016 J. Phys. B49 10LT01 [32] Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M and Cohen O 2015 Nat. Photonics9 99 [33] Reich D M and Madsen L B 2016 Phys. Rev. Lett.117 133902 [34] Medi?auskas L, Wragg J, Hart H van der and Ivanov M Y 2015 Phys. Rev. Lett.115 153001 [35] Zhang X F, Zhu X S, Liu X, Wang D, Zhang Q, Lan P and Lu P 2017 Opt. Lett.42 1027 [36] Dorney K M, Fan T T, Nguyen Q L D, et al. 2021 Opt. Exp.29 38119 [37] Lu H C, Li F S, Li N, Bai Y and Liu P 2021 J. Phys. B: At. Mol. Opt. Phys.54 174003 [38] Zhang H D, Guo J, Shi Y, Du H, Liu H F, Huang X R, Liu X S and Jing J 2017 Chin. Phys. Lett.34 014206 [39] Rajpoot R, Holkundkar A R and Bandyopadhyay J N 2021 J. Phys. B: At. Mol. Opt. Phys.54 225401 [40] Dorney K M, Ellis J L, Hernández-García C, Hickstein D D, Mancuso C A, Brooks N, Fan T T, Fan G Y, Zusin D, Gentry C, Grychtol P, Kapteyn H C and Murnane M M 2017 Phys. Rev. Lett.119 063201 [41] Feit M D, Fleck J A and Steiger A J R 1982 J. Comput. Phys.47 412 [42] Chen Y J, Fu L B and Liu J 2013 Phys. Rev. Lett.111 073902 [43] Nalda R de, Heesel E, Lein M, Hay N, Velotta R, Springate E, Castillejo M and Marangos J P 2004 Phys. Rev. A69 031804 [44] Lewenstein M, Balcou Ph, Ivanov Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A49 2117 [45] Habibovi? D, Becker W and Milo?evi? D B 2021 J. Opt. Soc. Am. B38 3367 [46] Burnett K, Reed V C, Cooper J and Knight P L 1992 Phys. Rev. A45 3347 [47] Od?ak S and Milo?evi? D B 2015 Phys. Rev. A92 053416 [48] Tong X M, Zhao Z X and Lin C D 2002 Phys. Rev. A66 033402 [49] Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP64 1191 [50] Delone N B and Krainov V P 1991 J. Opt. Soc. Am. B8 1207
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.