Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077802    DOI: 10.1088/1674-1056/ac4a64
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space

Shang-Qi Kuang(匡尚奇)1,2,†, Bo-Chao Li(李博超)1,2, Yi Wang(王依)3, Xue-Peng Gong(龚学鹏)3,‡, and Jing-Quan Lin(林景全)1,2,§
1 School of Science, Changchun University of Science and Technology, Changchun 130022, China;
2 Key Laboratory of Ultrafast and Extreme Ultraviolet Optics, Changchun University of Science and Technology, Changchun 130022, China;
3 State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  With the purpose of designing the extreme ultraviolet polarizer with many objectives, a combined application of multi-objective genetic algorithms is theoretically proposed. Owing to the multi-objective genetic algorithm, the relationships between different designing objectives of extreme ultraviolet polarizer have been obtained by analyzing the distribution of nondominated solutions in the four-dimensional objective space, and the optimized multilayer design can be obtained by guiding the searching in the desired region based on the multi-objective genetic algorithm with reference direction. Compared with the conventional method of multilayer design, our method has a higher probability of achieving the optimal multilayer design. Our work should be the first research in optimizing the optical multilayer designs in the high-dimensional objective space, and our results demonstrate a potential application of our method in the designs of optical thin films.
Keywords:  extreme ultraviolet polarizer      multilayer design      multi-objective genetic algorithm  
Received:  06 September 2021      Revised:  06 September 2021      Accepted manuscript online:  12 January 2022
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  41.50.+h (X-ray beams and x-ray optics)  
  42.79.Ci (Filters, zone plates, and polarizers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62175018, 61905239, and 61974142) and Jilin Scientific and Technological Development Plan, China (Grant Nos. 20190201013JC and 20200401052GX).
Corresponding Authors:  Shang-Qi Kuang, Xue-Peng Gong, Jing-Quan Lin     E-mail:  ksq@cust.edu.cn;gongxuepeng120@foxmail.com;linjingquan@cust.edu.cn

Cite this article: 

Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全) Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space 2022 Chin. Phys. B 31 077802

[1] Bakshi V 2018 EUV Lithography, 2nd edn
[2] Wang Z S, Wang H C, Zhu J T, Wang F L, Gu Z X, Chen L Y, Michette A G, Powell A K, Pfauntsch S J and Schäfers F 2006 J. Appl. Phys. 99 056108
[3] Wang Z S, Wang H C, Zhu J T, Zhang Z, Wang F L, Xu Y, Zhang S M, Wu W J, Chen L Y, Michette A G, Pfauntsch S J, Powell A K, Schäfers F, Gaupp A, Cui M Q, Sun L J and MacDonald M 2007 Appl. Phys. Lett. 90 081910
[4] Harada T and Watanabe T 2018 Proc. SPIE 10809 108091
[5] Pirozhkov A S and Ragozin E N 2015 Phys.-Usp. 58 1095
[6] Huang Q S, Medvedev V, van de Kruijs R, Yakshin A, Louis E and Bijkerk F 2017 Appl. Phys. Rev. 4 011104
[7] Aquila A L, Salmassi F, Dollar F, Liu Y and Gullikson E 2006 Opt. Express 14 10073
[8] Lin C Y, Chen S J, Chen Z Y and Ding Y C 2015 Chin. Phys. B 24 117802
[9] Wang H C, Zhu J T, Wang Z S, Zhang Z, Zhang S M, Wu W J, Chen L Y, Michette A G, Powell A K, Pfauntsch S J, Schfers F and Gaupp A 2006 Thin Solid Films 515 2523
[10] Tan M Y, Zhu J T, Chen L Y, Wang Z S, Le Guen K, Jonnard P, Giglia A, Mahne N and Nannarone S 2011 Nucl. Instrum. Meth. A 654 588
[11] Yakshin A E, Kozhevnikov I V, Zoethout E, Louis E and Bijkerk F 2010 Opt. Express 18 6957
[12] Kozhevnikov I V, Yakshin A E and Bijkerk F 2015 Opt. Express 23 9276
[13] Jiang H and Michette A G 2013 Nucl. Instrum. Meth. A 703 22
[14] Diveki Z, Bourassin-Bouchet C, de Rossi S, English E, Meltchakov E, Gobert O, Guénot D, Carré B, Saliéres P, Ruchon T and Delmotte F 2014 J. Mod. Opt. 61 122
[15] Yang X W, Kozhevnikov I V, Huang Q S, Wang H C, Sawhney K and Wang Z S 2016 Opt. Express 24 15079
[16] Mahdi E, Mohsen G and Zeinab S 2018 Chin. Phys. B 27 106802
[17] Pervak V, Trubetskov M K and Tikhonravov A V 2011 Opt. Express 19 2371
[18] Wang W L 2013 Optik 124 2482
[19] Kuang S Q, Gong X P and Yang H G 2018 Opt. Commun. 410 805
[20] Kuang S Q, Wang J B, Yang H G, Huo T L and Zhou H J 2019 AIP Adv. 9 045027
[21] Lin Q Z, Ma Y P, Chen J Y, Zhu Q L, Coello Coello C A, Wong K C and Chen F 2018 Inform. Sciences 430-431 46
[22] Liu R C, Li J X, Feng W, Yu X and Jiao L C 2018 Soft Comput. 22 6311
[23] Henke B L, Gullikson and Davis J C 1993 At. Data Tables 54 181
[24] Windt D L 1998 Comput. Phys. 12 360
[25] Wu S Y, Long X W and Yang K Y 2012 ISRN Optics 2012 659642
[26] Deb K, Pratap A, Agarwal S and Meyarivan T 2002 IEEE T. Evolut. Comput. 6 182
[27] Zitzler E, Laumanns M and Thiele L 2001 SPEA2:Improving the Strength Pareto Evolutionary Algorithm (Eidgenössische Technische Hochschule Zürich) (Institut für Technische Informatik und Kommunikationsnetze)
[28] Kuang S Q, Gong X P and Yang H G 2017 J. Appl. Phys. 122 185302
[29] Furman S and Tikhonravov A 1992 Basics of Optics of Multilayer Systems (Edition Frontieres) pp. 58-68
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[7] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[8] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[9] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[10] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[11] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[12] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[13] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
No Suggested Reading articles found!