CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Prediction of high-mobility two-dimensional electron gas at KTaO3-based heterointerfaces |
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Yi Li(李宜), Xin-Miao Zhang(张鑫淼), Xue-Jin Wang(王学晋), Yu-Fei Chen(陈宇飞), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Liang-Mo Mei(梅良模) |
School of Physics, Shandong University, Jinan 250100, China |
|
|
Abstract First-principles calculations are performed to explore the possibility of generating the two-dimensional electron gas (2DEG) at the interface between LaGaO3/KTaO3 and NdGaO3/KTaO3 (001) heterostructures. Two different models – i.e., the superlattice model and the thin film model–are used to conduct a comprehensive investigation of the origin of charge carriers. For the symmetric superlattice model, the LaGaO3 (or NdGaO3) film is nonpolar. The 2DEG with carrier density on the order of 1014 cm-2 originates from the Ta dxy electrons contributed by both LaGaO3 (or NdGaO3) and KTaO3. For the thin film model, large polar distortions occur in the LaGaO3 and NdGaO3 layer, which entirely screens the built-in electric field and prevents electrons from transferring to the interface. Electrons of KTaO3 are accumulated at the interface, contributing to the formation of the 2DEG. All the heterostructures exhibit conducting properties regardless of the film thickness. Compared with the Ti dxy electrons in SrTiO3-based heterostructures, the Ta dxy electrons have small effective mass and they are expected to move with higher mobility along the interface. These findings reveal the promising applications of 2DEG in novel nanoelectronic devices.
|
Received: 27 December 2018
Revised: 13 February 2019
Accepted manuscript online:
|
PACS:
|
71.10.Ca
|
(Electron gas, Fermi gas)
|
|
63.20.dk
|
(First-principles theory)
|
|
67.30.hp
|
(Interfaces)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 11374186, 51231007, and 51202132). |
Corresponding Authors:
Ji-Chao Li
E-mail: lijichao@sdu.edu.cn
|
Cite this article:
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Yi Li(李宜), Xin-Miao Zhang(张鑫淼), Xue-Jin Wang(王学晋), Yu-Fei Chen(陈宇飞), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Liang-Mo Mei(梅良模) Prediction of high-mobility two-dimensional electron gas at KTaO3-based heterointerfaces 2019 Chin. Phys. B 28 047101
|
[1] |
Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493
|
[2] |
Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
|
[3] |
Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
|
[4] |
Ohtomo A and Hwang H Y 2004 Nature 427 423
|
[5] |
Cen C, Thiel S, Hammerl G, Schneider C W, Andersen K E, Hellberg C S, Mannhart J and Levy J 2008 Nat. Mater. 7 298
|
[6] |
Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942
|
[7] |
Huijben M, Rijnders G, Blank D H A, Bals S, Van Aert S, Verbeeck J, Van Tendeloo G, Brinkman A and Hilgenkamp H 2006 Nat. Mater. 5 556
|
[8] |
Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
|
[9] |
Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A and Fert A 2007 Phys. Rev. Lett. 98 216803
|
[10] |
Kalabukhov A, Gunnarsson R, Borjesson J, Olsson E, Claeson T and Winkler D 2007 Phys. Rev. B 75 121404
|
[11] |
Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A and Beasley M R 2007 Phys. Rev. Lett. 98 196802
|
[12] |
Pavlenko N, Kopp T, Tsymbal E Y, Mannhart J and Sawatzky G A 2012 Phys. Rev. B 86 064431
|
[13] |
Willmott P R, Pauli S A, Herger R, Schleputz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C and Yacoby Y 2007 Phys. Rev. Lett. 99 155502
|
[14] |
Salluzzo M, Gariglio S, Torrelles X, Ristic Z, Di Capua R, Drnec J, Sala M M, Ghiringhelli G, Felici R and Brookes N B 2013 Adv. Mater. 25 2333
|
[15] |
Popovic Z S, Satpathy S and Martin R M 2008 Phys. Rev. Lett. 101 256801
|
[16] |
Pentcheva R and Pickett W E 2008 Phys. Rev. B 78 205106
|
[17] |
Li J C, Beltran J I and Munoz M C 1952 Phys. Rev. B 87 5
|
[18] |
Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B and Mei L M 2014 Chin. Phys. B 23 087302
|
[19] |
Basletic M, Maurice J L, Carretero C, Herranz G, Copie O, Bibes M, Jacquet E, Bouzehouane K, Fusil S and Barthelemy A 2008 Nat. Mater. 7 621
|
[20] |
Cen C, Thiel S, Mannhart J and Levy J 2009 Science 323 1026
|
[21] |
Singh-Bhalla G, Bell C, Ravichandran J, Siemons W, Hikita Y, Salahuddin S, Hebard A F, Hwang H Y and Ramesh R 2011 Nat. Phys. 7 80
|
[22] |
Chen Y Z, Christensen D V, Trier F, Pryds N, Smith A and Linderoth S 2012 Appl. Surf. Sci. 258 9242
|
[23] |
Plumb N C, Kobayashi M, Salluzzo M, Razzoli E, Matt C E, Strocov V N, Zhou K J, Shi M, Mesot J, Schmitt T, Patthey L and Radovic M 2017 Appl. Surf. Sci. 412 271
|
[24] |
Chen Y Z, Pryds N, Sun J R, Shen B G and Linderoth S 2013 Chin. Phys. B 22 116803
|
[25] |
Ishida H and Liebsch A 2008 Phys. Rev. B 77 115350
|
[26] |
Kim J S, Seo S S A, Chisholm M F, Kremer R K, Habermeier H U, Keimer B and Lee H N 2010 Phys. Rev. B 82 201407
|
[27] |
Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marre D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Miletto Granozio F 2010 Appl. Phys. Lett. 97 152111
|
[28] |
Moetakef P, Cain T A, Ouellette D G, Zhang J Y, Klenov D O, Janotti A, Van de Walle C G, Rajan S, Allen S J and Stemmer S 2011 Appl. Phys. Lett. 99 232116
|
[29] |
Annadi A, Putra A, Srivastava A, Wang X, Huang Z, Liu Z Q, Venkatesan T and Ariando 2012 Appl. Phys. Lett. 101 231604
|
[30] |
Uccio U S d, Aruta C, Cantoni C, Gennaro E D, Gadaleta A, Lupini A R, Maccariello D, Marr D, Pallecchi I, Paparo D, Perna P, Riaz M and Granozio F M 2012 Condens. Matter: Mater. Sci. arXiv: 1206.5083 [cond-mat.mtrl-sci]
|
[31] |
Gunkel F, Skaja K, Shkabko A, Dittmann R, Hoffmann-Eifert S and Waser R 2013 Appl. Phys. Lett. 102 071601
|
[32] |
Li C, Xu Q F, Wen Z, Zhang S T, Li A D and Wu D 2013 Appl. Phys. Lett. 103 201602
|
[33] |
Kalabukhov A, Boikov Y A, Serenkov I T, Sakharov V I, Claeson T and Winkler D 2015 J. Phys.: Condes. Matter 27 255004
|
[34] |
Wong F J, Baek S H, Chopdekar R V, Mehta V V, Jang H W, Eom C B and Suzuki Y 2010 Phys. Rev. B 81 161101
|
[35] |
Wemple S H 1965 Phys. Rev. 137 A1575
|
[36] |
Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J and Ahn C H 2015 APL Mater. 3 036104
|
[37] |
Zhang H, Zhang H, Yan X, Zhang X, Zhang Q, Zhang J, Han F, Gu L, Liu B, Chen Y, Shen B and Sun J 2017 ACS Appl. Mater. Interfaces 9 36456
|
[38] |
Zhang H, Yun Y, Zhang X, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y, Liu W, Hu F, Liu B, Shen B, Han W and Sun J 2018 Phys. Rev. Lett. 121 116803
|
[39] |
Wang Y Q, Tang W, Cheng J L, Behtash M and Yang K S 2016 ACS Appl. Mater. Interfaces 8 13659
|
[40] |
Koirala P, Gulec A and Marks L D 2017 Surf. Sci. 657 15
|
[41] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[42] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[43] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[44] |
Lee K S, Choi J H, Lee J Y and Baik S 2001 J. Appl. Phys. 90 4095
|
[45] |
Annadi A, Putra A, Liu Z Q, Wang X, Gopinadhan K, Huang Z, Dhar S, Venkatesan T and Ariando 2012 Phys. Rev. B 86 085450
|
[46] |
Yang K, Nazir S, Behtash M and Cheng J L 2016 Sci. Rep. 6 9
|
[47] |
Wang F N, Li J C, Du Y L, Zhang X H, Liu H Z, Liu J, Wang C L and Mei L M 2015 Appl. Surf. Sci. 355 1316
|
[48] |
Wang F N, Li J C, Zhang X M, Liu J, Zhao M L, Su W B, Wang C L and Mei L M 2018 Comput. Mater. Sci. 147 87
|
[49] |
Xu Q F, Wu D and Li A D 2013 Phys. Lett. A 377 577
|
[50] |
Zhong W, King-Smith R D and Vanderbilt D 1994 Phys. Rev. Lett. 72 3618
|
[51] |
Behtash M, Nazir S, Wang Y Q and Yang K S 2016 Phys. Chem. Chem. Phys. 18 6831
|
[52] |
Nazir S, Cheng J L, Behtash M, Luo J and Yang K S 2015 ACS Appl. Mater. Interfaces 7 14294
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|