Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 043101    DOI: 10.1088/1674-1056/28/4/043101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Low-lying electronic states of aluminum monoiodide

Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰)
Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy(Jilin University), Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  

High-level ab initio calculations of aluminum monoiodide (AlI) molecule are performed by utilizing the multi-reference configuration interaction plus Davidson correction (MRCI+Q) method. The core-valence correlation (CV) and spin-orbit coupling (SOC) effect are considered. The adiabatic potential energy curves (PECs) of a total of 13 Λ-S states and 24Ω states are computed. The spectroscopic constants of bound states are determined, which are in accordance with the results of the available experimental and theoretical studies. The interactions between the Λ-S states are analyzed with the aid of the spin-orbit matrix elements. Finally, the transition properties including transition dipole moment (TDM), Frank-Condon factors (FCF) and radiative lifetime are obtained based on the computed PEC. Our study sheds light on the electronic structure and spectroscopy of low-lying electronic states of the AlI molecule.

Keywords:  AlI molecule      potential energy curves (PECs)      core-valence correlation      spin-orbit coupling      multi-reference configuration interaction (MRCI)  
Received:  24 October 2018      Revised:  24 January 2019      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  33.70.Ca (Oscillator and band strengths, lifetimes, transition moments, and Franck-Condon factors)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 11874179, 11574114, and 11874177), and the Natural Science Foundation of Jilin Province, China (Grant Nos. 20180101289JC).

Corresponding Authors:  Hai-Feng Xu, Bing Yan     E-mail:  xuhf@jlu.edu.cn;yanbing@jlu.edu.cn

Cite this article: 

Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰) Low-lying electronic states of aluminum monoiodide 2019 Chin. Phys. B 28 043101

[1] Cernicharo J and Guélin M 1987 Astron. Astrophys. 183 L10
[2] Shuman E S, Barry J F and Demille D 2010 Nature 467 820
[3] Rosa M D D 2004 Eur. Phys. J. D. 31 395
[4] Yang R, Tang B and Gao T 2016 Chin. Phys. B 25 043101
[5] Liu X T, Shi D D, Shan S M, Yan P Y, Xu H F and Yan B 2016 J. Phys. Chem. A 120 8786
[6] Wells N and Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018
[7] Wyse F C and Gordy W 1972 J. Chem. Phys. 56 2130
[8] Martin E and Barrow R F 1978 Phys. Scr. 17 501
[9] Mahieu E, Dubois I and Bredohl H 1990 J. Mol. Spectrosc. 143 359
[10] Hargittai M and Varga 2010 J. Phys. Chem. 111 6
[11] Hamade Y, Taher F and Monteil Y 2009 Int. J. Quantum Chem. 110 1030
[12] Luo W, Li R, Gai Z Q, Ai R B, Zhang H M, Zhang X M and Yan B 2016 Chin. Phys. B 25 073101
[13] Zhao S T, Liang G Y, Li R, Li Q N, Zhang Z G and Yan B 2017 Acta Phys. Sin. 66 063103 (in Chinese)
[14] Liu X J, Miao F J, Li R, Zhang C H, Li Q N and Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese)
[15] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M 2012 Wires. Comput. Mol. Sci. 2 242
[16] Peterson K A and Yousaf K E 2010 J. Chem. Phys. 133 174116
[17] Peterson K A and Dunning T H J 2002 J. Chem. Phys. 117 10548
[18] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[19] Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342
[20] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[21] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[22] Berning A, Schweizer M, Werner H J, Knowles P J and Palmieri P 2000 Mol. Phys. 98 1823
[23] Le Roy R J 2017 J. Quantum Spectrosc. Radiat. Transfer 186 167
[24] Khalil H, Quéré F L, Brites V and Léonard C 2012 J. Mol. Spectrosc. 27 1
[25] Martin W C and Zalubas R 1979 J. Phys. Chem. Ref. Data 8 817
[26] Luc-Koenig E, Morillon C and Vergés J 1975 Phys. Scr. 12 199
[27] Peláez R J, Blondel C, Delsart C and Drag C 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125001
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
No Suggested Reading articles found!