Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 034202    DOI: 10.1088/1674-1056/28/3/034202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High quality 2-μm GaSb-based optically pumped semiconductor disk laser grown by molecular beam epitaxy

Jin-Ming Shang(尚金铭)1,2, Jian Feng(冯健)2,3, Cheng-Ao Yang(杨成奥)1,2, Sheng-Wen Xie(谢圣文)1,2, Yi Zhang(张一)1,2, Cun-Zhu Tong(佟存柱)2,3, Yu Zhang(张宇)1,2, Zhi-Chuan Niu(牛智川)1,2
1 State Key Laboratory for Superlattice and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, china;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  

The epitaxial growth conditions and performance of a diode-pumped GaSb-based optically pumped semiconductor disk laser (SDL) emitting near 2.0 μm in an external cavity configuration are reported. The high quality epitaxial structure, grown on Te-doped (001) oriented GaSb substrate by molecular beam epitaxy, consists of a distributed Bragg reflector (DBR), a multi-quantum-well gain region, and a window layer. An intra-cavity SiC heat spreader was attached to the gain chip for effective thermal management. A continuous-wave output power of over 1 W operating at 2.03 μ wavelength operating near room temperature was achieved using a 3% output coupler.

Keywords:  semiconductor disk laser      GaSb      molecular beam epitaxy  
Received:  03 December 2018      Revised:  21 December 2018      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Pk (Continuous operation)  
  78.55.Cr (III-V semiconductors)  
  78.67.De (Quantum wells)  
Fund: 

Project supported by the Major Program of the National Natural Science Foundation of China (Grant Nos. 61790581, 61790582, and 61790584), the National Natural Science Foundation of China (Grant No. 61435012), and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20170032).

Corresponding Authors:  Yu Zhang, Zhi-Chuan Niu     E-mail:  zhangyu@semi.ac.cn;zcniu@semi.ac.cn

Cite this article: 

Jin-Ming Shang(尚金铭), Jian Feng(冯健), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Yi Zhang(张一), Cun-Zhu Tong(佟存柱), Yu Zhang(张宇), Zhi-Chuan Niu(牛智川) High quality 2-μm GaSb-based optically pumped semiconductor disk laser grown by molecular beam epitaxy 2019 Chin. Phys. B 28 034202

[1] Thompson A, Northern H, Williams B, Hamilton M and Ewart P 2014 Sensor. Actuat. B-Chem. 198 309
[2] Liu L, Xiong B, Yan Y, Li J and Du Z 2016 IEEE Photonic. Tech. Lett. 28 1613
[3] Curcio J A, Drummeter L F, Petty C C, Stewart H S and Butler C P 1953 Opt. Soc. Am. 43 97
[4] Luo H, Yang C A, Xie S W, Chai X L, Huang S S, Zhang Y, Xu Y Q and Niu Z C 2018 J. Semicond. 39 104007
[5] Yang C A, Zhang Y, Liao Y P, Xing J L, Wei S H, Zhang L C, Xu Y Q, Ni H Q and Niu Z C 2016 Chin. Phys. B 25 024204
[6] Krzempek K, Jahjah M, Lewicki R, Stefański P, So S, Thomazy D and Tittel F K 2013 Appl. Phys. B 112 461
[7] Von E M, Scheuermann J, Nahle L, Zimmermann C, Hildebrandt L, Fischer M, Koeth J, Weih R, Hofling S and Kamp M 2014 Proc. SPIE 8993 89318
[8] Baranov A N, Cuminal Y, Boissier G, Nicolas J C, Lazzari J L, Alibert C and Joullié A 1996 Semiconduct. Sci. Technol. 11 1185
[9] DeLoach L D, Page R H, Wilke G D, Payne S A and Krupke W F 1996 IEEE J. Quantum. Elect. 32 885
[10] Mirov S B, Fedorov V V, Moskalev I S, Martyshkin D V, Myoung N, Camata R, Williams J E, Mirov M S, Goldstein J T 2011 Opt. Mater. 1 898
[11] Kuznetsov M, Hakimi F, Sprague R and Mooradian A 1997 IEEE Photon. Technol. Lett. 9 1063
[12] Shu S L, Hou G Y, Feng J, Wang L J, Tian S C, Tong C Z and Wang L J 2018 Opto-Elecreon. Adv. 1 170003
[13] Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E and Keller U 2008 Opt. Lett. 33 2719
[14] Rahim M, Arnold M, Felder F, Behfar K and Zogg H 2007 Appl. Phys. Lett. 91 151102
[15] Keller U and Tropper A C 2006 Phys. Rep. 429 67
[16] Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E and Keller U 2006 IEEE J. Quantum. Elect. 42 838
[17] Chilla J L A, Butterworth S D, Zeitschel A, Charles J P, Caprara A L, Reed M K and Spinelli L 2004 Proc. SPIE 5332 143
[18] Gerster E, Ecker I, Lorch S, Hahn C, Menzel S and Unger P 2003 Appl. Phys. 94 7397
[19] Xing J L, Zhang Y, Xu Y Q, Wang G W, Wang J, Xiang W, Ni H Q, Ren Z W, He Z H and Niu Z C 2014 Chin. Phys. B 23 017805
[20] Corzine S W, Geels R S, Scott J W, Yan R H and Coldren L A 1989 IEEE J. Quantum. Elect 25 1513
[21] Schulz N, Rattunde M, Ritzenthaler C, Rosener B, Manz C, Kohler K and Wagner J 2007 IEEE Photonic. Tech. L 19 1741
[22] Liau Z L 2000 Appl. Phys. Lett. 77 651
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[5] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[6] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[7] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[8] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[9] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[10] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[11] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[12] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[13] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[14] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[15] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
No Suggested Reading articles found!