ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of wide-bandwidth pulse with graphene saturable absorber based on tapered fiber |
Ren-Li Zhang(张仁栗)1,2, Jun Wang(王俊)1, Mei-Song Liao(廖梅松)1, Xia Li(李夏)1, Pei-Wen Guan(关珮雯)1, Yin-Yao Liu(刘银垚)1, Yan Zhou(周延)3, Wei-Qing Gao(高伟清)4 |
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Science, Shanghai Institute of Technology, Shanghai 201418, China;
4 School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei 230009, China |
|
|
Abstract Wide-bandwidth pulses were generated with a dispersion-managed erbium-doped passively mode-locked fiber laser based on a graphene saturable absorber. The graphene saturable absorber was composed of a tapered fiber deposited with graphene fabricated by liquid-phase exfoliation. The output pulse had a 3-dB bandwidth of 13.6 nm, which is the widest spectrum ever achieved with graphene-tapered-fiber saturable absorbers.
|
Received: 21 November 2018
Revised: 21 December 2018
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504500), the National Natural Science Foundation of China (Grant Nos. 61475171, 61705244, 61307056, and 61875052), and Natural Science Foundation of Shanghai, China (Grant Nos. 17ZR1433900 and 17ZR1434200). |
Corresponding Authors:
Mei-Song Liao
E-mail: liaomeisong@siom.ac.cn
|
Cite this article:
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Mei-Song Liao(廖梅松), Xia Li(李夏), Pei-Wen Guan(关珮雯), Yin-Yao Liu(刘银垚), Yan Zhou(周延), Wei-Qing Gao(高伟清) Generation of wide-bandwidth pulse with graphene saturable absorber based on tapered fiber 2019 Chin. Phys. B 28 034203
|
[1] |
Keller U 2003 Nature 424 831
|
[2] |
Chong A, Wright L G and Wise F W 2015 Rep. Prog. Phys. 78 113901
|
[3] |
Oktem B, &UUml;lgüdür C and Ö F 2010 Nat. Photon. 4 307
|
[4] |
Liu X, Cui Y, Han D, Yao X and Sun Z 2015 Sci. Rep. 5 9101
|
[5] |
Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y and Wang F 2013 Sci. Rep. 3 2718
|
[6] |
Renninger W H, Chong A and Wise F W 2008 Phys. Rev. A 77 023814
|
[7] |
Wang L, Liu X, Gong Y, Mao D and Duan L 2011 Opt. Express 19 7616
|
[8] |
Zhao L M, Bartnik A C, Tai Q Q and Wise F W 2013 Opt. Lett. 38 1942
|
[9] |
Li D, Li L, Zhou J, Zhao L, Tang D and Shen D 2016 Sci. Rep. 6 23631
|
[10] |
Turchinovich D, Liu X and Lægsgaard J 2008 Opt. Express 16 14004
|
[11] |
Ortaç B, Plotner M, Limpert J and Tünnermann A 2007 Opt. Express 15 16794
|
[12] |
Martinez A and Sun Z 2013 Nat. Photon. 7 842
|
[13] |
Sun Z and Hasan T 2010 ACS Nano 4 803
|
[14] |
Liu X, Yao X and Cui Y 2018 Phys. Rev. Lett. 121 023905
|
[15] |
Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
|
[16] |
Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G and Tian J G 2014 Opt. Express 22 10239
|
[17] |
Xing G, Guo H, Zhang X, Sum T C and Huan C H A 2010 Opt. Express 18 4564
|
[18] |
Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
|
[19] |
Song Y W, Jang S Y, Han W S and Bae M K 2010 Appl. Phys. Lett. 96 051122
|
[20] |
Jinzhang W, Zhengqian L, Min Z, Chenchun Y, Hongyan F, Zhiping C, Huihui C, Huiying X and Wei Q 2012 IEEE Photon. J. 4 1295
|
[21] |
Choi S Y, Cho D K, Song Y W, Oh K, Kim K, Rotermund F and Yeom D I 2012 Opt. Express 20 5652
|
[22] |
Lin Y H, Yang C Y, Liou J H, Yu C P and Lin G R 2013 Opt. Express 21 16763
|
[23] |
Sobon G 2015 Photon. Res. 3 A56
|
[24] |
Wu K, Chen B, Zhang X, Zhang S, Guo C, Li C, Xiao P, Wang J, Zhou L, Zou W and Chen J 2018 Opt. Commun. 406 214
|
[25] |
Wang X F, Zhang J H, Peng X L and Mao X F 2018 Chin. Phys. B 27 084215
|
[26] |
Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P and Ye C C 2012 Laser Phys. Lett. 9 229
|
[27] |
Sheng Q W, Feng M, Xin W, Guo H, Han T Y, Li Y G, Liu Y G, Gao F, Song F, Liu Z B and Tian J G 2014 Appl. Phys. Lett. 105 041901
|
[28] |
Mouchel P, Semaan G, Niang A, Salhi M, Le Flohic M and Sanchez F 2017 Appl. Phys. Lett. 111 031106
|
[29] |
Tamura K, Ippen E P, Haus H A and Nelson L E 1993 Opt. Lett. 18 1080
|
[30] |
Popa D, Sun Z, Torrisi F, Hasan T, Wang F and Ferrari A C 2010 Appl. Phys. Lett. 97 203106
|
[31] |
Haus H A, Tamura K, Nelson L E and Ippen E P 1995 IEEE J. Quantum Electron. 31 591
|
[32] |
Sotor J, Pasternak I, Krajewska A, Strupinski W and Sobon G 2015 Opt. Express 23 27503
|
[33] |
Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2015 Opt. Mater. Express 5 2884
|
[34] |
Chen H R, Tsai C Y, Chang C Y, Lin K H, Chang C S and Hsieh W F 2015 J. Lightwave Technol. 33 4406
|
[35] |
Lotya M, King P J, Khan U, De S and Coleman J N 2010 ACS Nano 4 3155
|
[36] |
Khan U, O'Neill A, Lotya M, De S and Coleman J N 2010 Small 6 864
|
[37] |
Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A, Bol, C, Lotya M, Istrate O M, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O'Brien S E, McGuire E K, Sanchez B M, Duesberg G S, McEvoy N, Pennycook T J, Downing C, Crossley A, Nicolosi V and Coleman J N 2014 Nat. Mater. 13 624
|
[38] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
[39] |
Chen Z 2007 J. Shanghai University 13 383
|
[40] |
Kashiwagi K and Yamashit S 2009 Opt. Express 17 18364
|
[41] |
Wang G 2017 Opt. Laser Technol. 96 307
|
[42] |
Ge Y, Guo Q, Shi J, Chen X, Bai Y, Luo J, Jin X, Ge Y, Li L, Tang D, Shen D and Zhao L 2016 Microw. Opt. Technol. Lett. 58 242
|
[43] |
Steinberg D, Zapata J D, Thoroh de Souza E A and Saito L A M 2018 J. Lightwave Technol. 36 1868
|
[44] |
Ahmed M H M, Latiff A A, Arof H and Harun S W 2016 Laser Phys. Lett. 13 095104
|
[45] |
Sotor J, Sobon G and Abramski K M 2014 Opt. Express 22 13244
|
[46] |
Lin Y H, Yang C Y, Lin S F, Tseng W H, Bao Q, Wu C I and Lin G R 2014 Laser Phys. Lett. 11 055107
|
[47] |
Niu K, Sun R, Chen Q, Man B and Zhang H 2018 Photon. Res. 6 72
|
[48] |
Xia H, Li H, Lan C, Li C, Zhang X, Zhang S and Liu Y 2014 Opt. Express 22 17341
|
[49] |
Chen H, Li I L, Ruan S, Guo T and Yan P 2016 Opt. Eng. 55 081318
|
[50] |
Zhang K, Feng M, Ren Y, Liu F, Chen X, Yang J, Yan X Q, Song F and Tian J 2018 Photon. Res. 6 893
|
[51] |
Liu X M, Yang H R, Cui Y D, Chen G W, Yang Y, Wu X Q, Yao X K, Han D D, Han X X, Zeng C, Guo J, Li W L, Cheng G and Tong L M 2016 Sci. Rep. 6 26024
|
[52] |
Wu X, Yu S, Yang H, Li W, Liu X and Tong L 2016 Carbon 96 1114
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|