CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Suppression of indium-composition fluctuations in InGaN epitaxial layers by periodically-pulsed mixture of N2 and H2 carrier gas |
Hai-Long Wang(王海龙), Xiao-Han Zhang(张晓涵), Hong-Xia Wang(王红霞), Bin Li(黎斌), Chong Chen(陈冲), Yong-Xian Li(李永贤), Huan Yan(颜欢), Zhi-Sheng Wu(吴志盛), Hao Jiang(江灏) |
State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract Indium-composition fluctuations in InGaN epitaxial layers are suppressed by using periodically-pulsed mixture (PPM) of N2 and H2 carrier gas. Photoluminescence, optical transmission, reciprocal space map and space-resolved cathodoluminescence are employed to characterize the InGaN epilayers. It is shown that the lateral In-fluctuations mainly occur as hillock-like In-rich regions. Both the number and size of In-rich regions are reduced by introducing the PPM carrier gas. Moreover, the measurements first experimentally demonstrate that the H2 carrier gas has a stronger decomposition effect on the In-rich region. As the duration time of the PPM carrier gas increases, the reduction of In-content in the In-rich region reaches up to 12%, however, only 2% for the In-homogeneous region. These factors lead to the suppression of In-fluctuations.
|
Received: 04 July 2018
Revised: 16 September 2018
Accepted manuscript online:
|
PACS:
|
78.55.Cr
|
(III-V semiconductors)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by the Science and Technology Major Project of Guangdong Province, China (Grant No. 2015B010112001) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030312011). |
Corresponding Authors:
Hao Jiang
E-mail: stsjiang@mail.sysu.edu.cn
|
Cite this article:
Hai-Long Wang(王海龙), Xiao-Han Zhang(张晓涵), Hong-Xia Wang(王红霞), Bin Li(黎斌), Chong Chen(陈冲), Yong-Xian Li(李永贤), Huan Yan(颜欢), Zhi-Sheng Wu(吴志盛), Hao Jiang(江灏) Suppression of indium-composition fluctuations in InGaN epitaxial layers by periodically-pulsed mixture of N2 and H2 carrier gas 2018 Chin. Phys. B 27 127805
|
[1] |
Chin V W L, Zhou B, Tansley T L and Li X 1995 J. Appl. Phys. 77 6064
|
[2] |
Bae S Y, Song Y H, Jeon S R, Kim D M, Jho Y D and Lee D S 2014 J. Cryst. Growth 387 23
|
[3] |
Tong J H, Li S T, Lu T P, Liu C, Wang H L, Wu L J, Zhao B J, Wang X F and Chen X 2012 Chin. Phys. B 21 118502
|
[4] |
Czernecki R, Kret S, Kempisty P, Grzanka E, Plesiewicz J, Targowski G, Grzanka S, Bilska M, Smalc-Koziorowska M, Krukowski S, Suski T, Perlin P and Leszczynski M 2014 J. Cryst. Growth 402 330
|
[5] |
Gokarna A, Gauthier-Brun A, Liu W, Androussi Y, Dumont E, Dogheche E, Teng J H, Chua S J and Decoster D 2010 Appl. Phys. Lett. 96 191909
|
[6] |
Pantha B N, Dahal R, Li J, Lin J Y, Jiang H X and Pomrenke G 2008 Appl. Phys. Lett. 92 042112
|
[7] |
Gmili Y E, Orsal G, Pantzas K, Moudakir T, Sundaram S, Patriarche G, Hester J, Ahaitouf A, Salvestrini J P and Ougazzaden A 2013 Acta Mater. 61 6587
|
[8] |
Pantha B N, Li J, Lin J Y and Jiang H X 2008 Appl. Phys. Lett. 93 182107
|
[9] |
Karpov S Y 1998 MRS Internet J. Nitride Semicond. Res. 3 16
|
[10] |
El-Masry N A, Piner E L, Liu S X and Bedair S M 1998 Appl. Phys. Lett. 72 40
|
[11] |
Kang J H, Ebaid M, Lee J K and Ryu S W 2015 Appl. Phys. A 121 765
|
[12] |
Ozaki T, Takagi Y, Nishinaka J, Funato M and Kawakami Y 2014 Appl. Phys. Express 7 091001
|
[13] |
Li N, Wang S J, Park E H, Feng Z C, Tsai H L, Yang J R and Ferguson I 2009 J. Cryst. Growth 311 4628
|
[14] |
Pantha B N, Li J, Lin J Y and Jiang H X 2010 Appl. Phys. Lett. 96 232105
|
[15] |
Pantzas K, Gmili Y E, Dickerson J, Gautier S, Largeau L, Mauguin O, Patriarche G, Suresh S, Moudakir T, Bishop C, Ahaitouf A, Rivera T, Tanguy C, Voss P L and Ougazzaden A 2013 J. Cryst. Growth 370 57
|
[16] |
Pantzas K, Patriarche G, Troadec D, Kociak M, Cherkashin N, Hytch M, Barjon J, Tanguy C, Rivera T, Suresh S and Ougazzaden A 2015 J. Appl. Phys. 117 055705
|
[17] |
Moseley M, Lowder J, Billingsley D and Doolittle W A 2010 Appl. Phys. Lett. 97 191902
|
[18] |
Moseley M, Gunning B, Greenlee J, Lowder J, Namkoong G and Doolittle W A 2012 J. Appl. Phys. 112 014909
|
[19] |
Woo H, Jo H, Kim J, Cho S, Jo Y, Roh C H, Lee J H, Seo Y, Park J, Kim H, Hahn C K and Im H 2017 Curr. Appl. Phys. 17 1142
|
[20] |
Suihkonen S, Lang T, Svensk O, Sormunen J, Torma P T, Sopanen M, Lipsanen H, Odnoblyudov M A and Bougrov V E 2007 J. Crysl. Growth 300 324
|
[21] |
Ting S M, Ramer J C, Florescu D I, Merai V N, Albert B E, Parekh A, Lee D S, Lu D, Christini D V, Liu L and Armour E A 2003 J. Appl. Phys. 94 1461
|
[22] |
Moon Y T, Kim D J, Song K M, Choi C J, Han S H, Seong T Y and Park S J 2001 J. Appl. Phys. 89 6514
|
[23] |
Piner E L, Behbehani M K, El-Masry N A, Mclntosh F G, Roberts J C, Boutros K S and Bedair S M 1997 Appl. Phys. Lett. 70 461
|
[24] |
Bosi M and Fornari R 2004 J. Cryst. Growth 265 434
|
[25] |
Piner E L, Behbehani M K, El-Masry N A, Roberts J C, Mclntosh F G and Bedair S M 1997 Appl. Phys. Lett. 71 2023
|
[26] |
Sumiya M, Toyomitsu N, Nakano Y, Wang J, Harada Y, Sang L, Sekiguchi T, Yamaguchi T and Honda T 2017 APL Mater. 5 016105
|
[27] |
Namvar E and Fattahi M 2008 J. Lumin. 128 155
|
[28] |
Laws G M, Larkins E C, Harrison I, Molloy C and Someford D 2001 J. Appl. Phys. 89 1108
|
[29] |
Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214
|
[30] |
Marquez E, Ramirez-Malo J, Villares P, Jimenez-Garay R, Ewen P J S and Owen A E 1992 J. Phys. D: Appl. Phys. 25 535
|
[31] |
Chen Z Z, Qin Z X, Hu X D, Yu T J, Yang Z J, Tong Y Z, Ding X M and Zhang G Y 2004 Physica B 344 292
|
[32] |
Dobrovolskas D, Mickevicius J, Nargelas S, Vaitkevicius A, Nanishi Y, Araki T and Tamulaitis G 2017 Semicond. Sci. Technol. 32 025012
|
[33] |
Tao T, Zhi T, Liu B, Li Y, Zhuang Z, Xie Z, Chen D, Chen P, Zhang R and Zheng Y 2014 Phys. Status Solidi A 211 2823
|
[34] |
Liu J, Liang H, Xia X, Liu Y, Liu J, Abbas Q, Shen R, Luo Y, Zhang Y and Du G 2017 Cryst. Growth 17 3411
|
[35] |
Kryzhanovskaya N V, Lundin W V, Nikolaev A E, Tsatsulnikov A F, Sakharov A V, Pavlov M M, Cherkachin N A, Hytch M J, Valkovsky G A, Yagovkina M A and Usov S O 2010 Semiconductors 44 828
|
[36] |
Koukitu A, Taki T, Takahashi N and Seki H 1999 J. Cryst. Growth 197 99
|
[37] |
Koleske D D, Wierer Jr J J, Fischer A J and Lee S R 2014 J. Cryst. Growth 390 38
|
[38] |
Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Francol N, Watson M and Deatcher C J 2002 Appl. Phys. Lett. 80 3913
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|