Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047803    DOI: 10.1088/1674-1056/27/4/047803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characteristic improvements of thin film AlGaInP red light emitting diodes on a metallic substrate

Bin Zhao(赵斌)1,2, Wei Hu(胡巍)1,2, Xian-Sheng Tang(唐先胜)1,2, Wen-Xue Huo(霍雯雪)1,2, Li-Li Han(韩丽丽)1,2, Ming-Long Zhao(赵明龙)1,2, Zi-Guang Ma(马紫光)1, Wen-Xin Wang(王文新)1, Hai-Qiang Jia(贾海强)1, Hong Chen(陈弘)1
1. Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We report a type of thin film AlGaInP red light emitting diode (RLED) on a metallic substrate by electroplating copper (Cu) to eliminate the absorption of GaAs grown substrate. The fabrication of the thin film RLED is presented in detail. Almost no degradations of epilayers properties are observed after this substrate transferred process. Photoluminescence and electroluminescence are measured to investigate the luminous characteristics. The thin film RLED shows a significant enhancement of light output power (LOP) by improving the injection efficiency and light extraction efficiency compared with the reference RLED on the GaAs parent substrate. The LOPs are specifically enhanced by 73.5% and 142% at typical injections of 2 A/cm2 and 35 A/cm2 respectively from electroluminescence. Moreover, reduced forward voltages, stable peak wavelengths and full widths at half maximum are obtained with the injected current increasing. These characteristic improvements are due to the Cu substrate with great current spreading and the back reflection by bottom electrodes. The substrate transferred technology based on electroplating provides an optional way to prepare high-performance optoelectronic devices, especially for thin film types.

Keywords:  light emitting diodes      thin film      electroplating      substrate transferred process  
Received:  17 December 2017      Revised:  09 January 2018      Accepted manuscript online: 
PACS:  78.60.Fi (Electroluminescence)  
  73.21.Ac (Multilayers)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  78.55.Cr (III-V semiconductors)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0400600 and 2016YFB0400603) and the National Natural Science Foundation of China (Grant Nos. 11574362, 61210014, and 11374340).

Corresponding Authors:  Hong Chen     E-mail:  hchen@iphy.ac.cn

Cite this article: 

Bin Zhao(赵斌), Wei Hu(胡巍), Xian-Sheng Tang(唐先胜), Wen-Xue Huo(霍雯雪), Li-Li Han(韩丽丽), Ming-Long Zhao(赵明龙), Zi-Guang Ma(马紫光), Wen-Xin Wang(王文新), Hai-Qiang Jia(贾海强), Hong Chen(陈弘) Characteristic improvements of thin film AlGaInP red light emitting diodes on a metallic substrate 2018 Chin. Phys. B 27 047803

[1] Holonyak N 2000 Am. J. Phys. 68 864
[2] Harbers G, Krames M R and Bierhuizen S J 2007 J. Disp. Technol. 3 98
[3] Gessmann T and Schubert E F 2004 J. Appl. Phys. 95 2203
[4] Holonyak N and Bevacqua S F 1962 Appl. Phys. Lett. 1 82
[5] Schnitzer I, Yablonovitch E, Caneau C and Gmitter T J 1993 Appl. Phys. Lett. 62 131
[6] Chang S J, Chang C S, Su Y K, Chang P T and Wu Y R 1998 IEE Proc.-Optoelectron. 144 405
[7] Altieri P, Jaeger A, Windisch R, Linder N and Stauss P 2005 J. Appl. Phys. 98 086101
[8] Wayne J T L T P 2005 Proc. SPIE 5739 81
[9] Zhu Z H, Ejeckam F E, Qian Y and Zhang J 1997 IEEE J. Sel. Top. Quantum Electron. 3 927
[10] Chang S J 1997 IEEE Photon. Technol. Lett. 9 182
[11] Sugawara H, Itaya K and Hatakoshi G 1993 J. Appl. Phys. 74 3189.
[12] Wang G H 1998 Proc. SPIE 3560 89
[13] Lee W I 1995 Appl. Phys. Lett. 67 3753
[14] Sugawara H, Itaya K and Hatakoshi G 1994 Jpn. J. Appl. Phys. 33 6195
[15] Hsu S, Wuu D, Lee C, Su J and Horng R 2007 IEEE Photon. Technol. Lett. 19 492
[16] Hsu S C, Wuu D S, Zheng X H and Horng R H 2009 J. Electrochem. Soc. 156 H281
[17] Lee Y J and Chang C W 2006 Semicond. Sci. Technol. 21 184
[18] Höfler G E, Vanderwater D A, DeFevere D C, Kish F A, Camras M D, Steranka F M and Tan I H 1996 Appl. Phys. Lett. 69 803
[19] Krames M R, Ochiai-Holcomb M, Höfler G E, Carter-Coman C, Chen E I, Tan I H, Grillot P, Gardner N F, Chui H C, Huang J W, Stockman S A, Kish F A, Craford M G, Tan T S, Kocot C P, Hueschen M, Posselt J, Loh B, Sasser G and Collins D 1999 Appl. Phys. Lett. 75 2365
[20] Craford M G 1977 IEEE Trans. Electron Dev. 24 935
[21] Zhang B, Egawa T, Ishikawa H, Liu Y and Jimbo T 2005 Appl. Phys. Lett. 86 71113
[22] Chiu C H, Chu C, Kuo H, Tian K and Li L 2017 Opt. Lett. 42 4533
[23] Kim S K, Song H D, Ee H S, Choi H M and Cho H K 2009 Appl. Phys. Lett. 94 101102
[24] Lee Y H, et al. 2015 Curr. Appl. Phys. 15 1312
[25] Gleskova H, Wagner S and Suo Z 2000 2000 J. Non-Cryst. Solids 266 1320
[26] Lee Y H, Park K W, Kang S J, Yeo C I, Kim J B, Kang, E K, Song, Y M and Lee Y T 2015 Curr. Appl. Phys. 15 1312
[27] Bir G L and Pikus G E 1974 Symmetry and strain-induced effects in semiconductors (New York:John Wiley & Sons)
[28] Bachelet G B and Christensen N E 1985 Phys. Rev. B 30 5753
[29] Tseng M, Wuu D, Chen C, Lee H, Lin Y and Horng R 2016 Opt. Mater. Express 6 1349
[30] Nakamura S 1998 Science 281 956
[31] Wei X 2004 J. Electron Packaging 126 60
[32] Eliseev P G, Perlin P, Lee J and Osiński M 1997 Appl. Phys. Lett. 71 569
[33] Shim J I, Han D P, Kim H, Shin D S and Lin G B 2012 Appl. Phys. Lett. 100 111106
[34] Gui C, Liu M, Liu S, Zhou S and Liu X 2017 Opt. Express 25 26615
[35] Kayes B M, Zhang L, Twist R, Ding I and Higashi G S 2014 IEEE J. Photovolt 4 729
[1] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[2] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[3] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[4] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[5] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[6] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[7] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[8] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[9] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[10] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[11] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[12] Accurate capacitance-voltage characterization of organic thin films with current injection
Ming Chu(褚明), Shao-Bo Liu(刘少博), An-Ran Yu(蔚安然), Hao-Miao Yu(于浩淼), Jia-Jun Qin(秦佳俊), Rui-Chen Yi(衣睿宸), Yuan Pei(裴远), Chun-Qin Zhu(朱春琴), Guang-Rui Zhu(朱光瑞), Qi Zeng(曾琪), and Xiao-Yuan Hou(侯晓远). Chin. Phys. B, 2021, 30(8): 087301.
[13] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[14] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[15] Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films
Hui Wang(王辉), Meng Wu(吴猛), Haiping Zhou(周海平), Bo Zhang(张博), Shixin Hu(胡世欣), Tianyong Ma(马天勇), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2021, 30(5): 057505.
No Suggested Reading articles found!