SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University |
Prev
Next
|
|
|
Increase of photoluminescence blinking frequency of 3C-SiC nanocrystals with excitation power |
Zhixing Gan(甘志星)1, Weiping Zhou(周卫平)2, Ming Meng(孟明)3 |
1 Center for Quantum Transport and Thermal Energy Science, Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 School of Science, Nanjing University of Science and Technology, Nanjing 210094, China;
3 School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China |
|
|
Abstract Super-resolution optical fluctuation imaging is dependent on the blinking frequency of fluorophores. Consequently, improvement of the photoluminescence (PL) blink frequency is important. This is achieved for 3C-SiC nanocrystals (NCs) by simply increasing the excitation power. Using an excitation of 488 nm with powers of 5 μW to 50 μW, individual 3C-SiC NC always exhibits PL blinking with a short on-state sojourn time (<0.1 s). A fast Fourier transform method is exploited to determine the PL switching frequency. It is found that the frequency of the bright state increases from 2 Hz to 20 Hz as the excitation power increases from 5 μW to 50 μW, which is explained by the Auger photonionization model.
|
Received: 19 August 2018
Revised: 12 September 2018
Accepted manuscript online:
|
PACS:
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
32.80.-t
|
(Photoionization and excitation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604155, 11604147, and 51702379), China Postdoctoral Science Foundation (Grant Nos. 2016M600428 and 2017T100386), and the Planned Projects for Postdoctoral Research Funds of China (Grant No. 1601023A). |
Corresponding Authors:
Zhixing Gan
E-mail: zxgan@njnu.edu.cn
|
Cite this article:
Zhixing Gan(甘志星), Weiping Zhou(周卫平), Ming Meng(孟明) Increase of photoluminescence blinking frequency of 3C-SiC nanocrystals with excitation power 2018 Chin. Phys. B 27 127804
|
[1] |
Hoogenboom J P, van Dijk E M H P, Hernando J, van Hulst N F and Garcia-Parajo M F 2005 Phys. Rev. Lett. 95 097401
|
[2] |
Dickson R M, Cubitt A B, Tsien R Y and Moerner W E 1997 Nature 388 355
|
[3] |
Bout D A V, Yip W T, Hu D H, Fu D K, Swager T M and Barbara P F 1997 Science 277 1074
|
[4] |
Fomenko V and Nesbitt D J 2008 Nano Lett. 8 287
|
[5] |
Li L, TianG J, Luo Y, Brismar H and Fu Y 2013 J. Phys. Chem. C 117 4844
|
[6] |
Wang S Y, Querner C, Emmons T, Drndic M and Crouch C H 2006 J. Phys. Chem. B 110 23221
|
[7] |
Glennon J J, Tang R, Buhro W E and Loomis R A 2007 Nano Lett. 7 3290
|
[8] |
Frantsuzov P, Kuno M, Janko B and Marcus R A 2008 Nat. Phys. 4 519
|
[9] |
Gomez D E, van Embden J, Jasieniak J, Smith T A and Mulvaney P 2006 Small 2 204
|
[10] |
Mahler B, Spinicelli P, Buil S, Quelin X, Hermier J P and Dubertret B 2008 Nat. Mater. 7 659
|
[11] |
Wang X Y, Ren X F, Kahen K, Hahn M A, Rajeswaran M, Maccagnano-Zacher S, Silcox J, Cragg G E, EfrosA L and Krauss T D 2009 Nature 459 686
|
[12] |
Hohng S C and Ha T 2004 J. Am. Chem. Soc. 126 1324
|
[13] |
Ai N, Walden-NewmanW, Song Q, Kalliakos S and Strauf S 2011 ACS Nano 5 2664
|
[14] |
Javaux C, Mahler B, Dubertret B, Shabaev A, Rodina A V, Efros A L, Yakovlev D R, Liu F, Bayer M, Camps G, Biadala L, Buil S, Quelin X and Hermier J P 2013 Nat. Nanotechnol. 8 206
|
[15] |
Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K and BawendiMG 2013 Nat. Mater. 12 445
|
[16] |
Dertingera T, Colyera R, Iyera G, Weissa S and Enderleind J 2009 Proc. Natl. Acad. Sci. USA 106 22287
|
[17] |
Uno S, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan M C, Fujita H, Funatsu T, Okada Y, Tobita S and Urano Y 2014 Nat. Chem. 6 681
|
[18] |
Jiang Y, Novoa M, Nongnual T, Powell R, Bruce T and McNeill J 2017 Nano Lett. 17 3896
|
[19] |
Chen X, Li R, Liu Z, Sun K, Sun Z, Chen D, Xu G, Xi P, Wu C and Sun Y 2017 Adv. Mater. 29 1604850
|
[20] |
Chien F C, Kuo C W and Chen P 2011 Analyst 136 1608
|
[21] |
Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Röhrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B and Seyller T 2009 Nat. Mater. 8 203
|
[22] |
vanDorp D H, Hijnen N, Di Vece M and Kelly J J 2009 Angew. Chem. Int. Ed. 48 6085
|
[23] |
Nishino S, Powell J A and Will H A 1983 Appl. Phys. Lett. 42 460
|
[24] |
Castelletto S, Johnson B C, Ivády V, Stavrias N, Umeda T, Gali A and Ohshima T 2014 Nat. Mater. 13 151
|
[25] |
Gan Z X, Wu X L, Xu H, Zhang N, Nie S P and Fu Y 2016 J. Phys. D: Appl. Phys. 49 275107
|
[26] |
Wu X L, Fan J Y, Qiu T, Yang X, Siu G G and Chu P K 2005 Phys. Rev. Lett. 94 026102
|
[27] |
Singh M R, Schindel D G and Hatef A 2011 Appl. Phys. Lett. 99 181106
|
[28] |
Efros A L and Rosen M 1997 Phys. Rev. Lett. 78 1110
|
[29] |
Wu X L, Xiong S J, Zhu J, Wang J, Shen J C and Chu P K 2009 Nano Lett. 9 4053
|
[30] |
Stefani F D, Hoogenboom J P and Barkai E 2009 Phys. Today 62 39
|
[31] |
Chen Z H, Wang Y, Yang Y, Qiao N, Wang Y and Yu Z 2014 Nanoscale 6 14708
|
[32] |
Chen Z H, Liang L, Wang Y and Yang Y 2016 J. Mater. Chem. C 4 11321
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|