1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
InGaSb/AlGaAsSb double-quantum-well diode lasers emitting around 2 μm are demonstrated. The AlGaAsSb barriers of the lasers are grown with digital alloy techniques consisting of binary AlSb/AlAs/GaSb short-period pairs. Peak power conversion efficiency of 26% and an efficiency higher than 16% at 1 W are achieved at continuous-wave operation for a 2-mm-long and 100-μm-wide stripe laser. The maximum output power of a single emitter reaches to 1.4 W at 7 A. 19-emitter bars with maximum efficiency higher than 20% and maximum power of 16 W are fabricated. Lasers with the short-period-pair barriers are proved to have improved temperature properties and wavelength stabilities. The characteristic temperature (T0) is up to 140℃ near room temperature (25-55℃).
Project supported by the National Natural Science Foundation of China (Grant Nos. 61790580 and 61435012), the National Basic Research Program of China (Grant No. 2014CB643903), and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20170032).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.