Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 014208    DOI: 10.1088/1674-1056/28/1/014208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars

Sheng-Wen Xie(谢圣文)1,2, Yu Zhang(张宇)1,2, Cheng-Ao Yang(杨成奥)1,2, Shu-Shan Huang(黄书山)1,2, Ye Yuan(袁野)1,2, Yi Zhang(张一)1,2, Jin-Ming Shang(尚金铭)1,2, Fu-Hui Shao(邵福会)1,2, Ying-Qiang Xu(徐应强)1,2, Hai-Qiao Ni(倪海桥)1,2, Zhi-Chuan Niu(牛智川)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

InGaSb/AlGaAsSb double-quantum-well diode lasers emitting around 2 μm are demonstrated. The AlGaAsSb barriers of the lasers are grown with digital alloy techniques consisting of binary AlSb/AlAs/GaSb short-period pairs. Peak power conversion efficiency of 26% and an efficiency higher than 16% at 1 W are achieved at continuous-wave operation for a 2-mm-long and 100-μm-wide stripe laser. The maximum output power of a single emitter reaches to 1.4 W at 7 A. 19-emitter bars with maximum efficiency higher than 20% and maximum power of 16 W are fabricated. Lasers with the short-period-pair barriers are proved to have improved temperature properties and wavelength stabilities. The characteristic temperature (T0) is up to 140℃ near room temperature (25-55℃).

Keywords:  mid-infrared laser diode      digital alloys      characteristic temperature      bars  
Received:  27 August 2018      Revised:  12 December 2018      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  78.55.Cr (III-V semiconductors)  
  78.67.De (Quantum wells)  
  42.60.Pk (Continuous operation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61790580 and 61435012), the National Basic Research Program of China (Grant No. 2014CB643903), and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20170032).

Corresponding Authors:  Yu Zhang, Zhi-Chuan Niu     E-mail:  zhangyu@semi.ac.cn;zcniu@semi.ac.cn

Cite this article: 

Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars 2019 Chin. Phys. B 28 014208

[1] Scholle K, Lamrini S, Koopmann P and Fuhrberg P 2010 2 μm Laser Sources and Their Possible Applications
[2] Peters M, Rossin V, Everett M, et al. 2007 Proc. SPIE 6456
[3] Peters M, Rossin V and Zucker E 2007 High-Power Diode Laser Technology and Applications V p. 1217
[4] Lyu Y, Han X, Sun Y, Jiang Z, Guo C, Xiang W, Dong Y, Cui J, Yao Y, Jiang D, Wang G, Xu Y and Niu Z 2018 J. Cryst. Growth 482 70
[5] Schafer F, Mayer B, Reithmaier J P and Forchel A 1998 Appl. Phys. Lett. 73 2863
[6] Mourad C, Gianardi D, Malloy K J and Kaspi R 2000 J. Appl. Phys. 88 5543
[7] Yang C, Zhang Y, Liao Y, Xing J, Wei S, Zhang L, Xu Y, Ni H and Niu Z 2016 Chin. Phys. B 25 24204
[8] Li H, Chyr I, Srinivasan R, et al. 2007 Proc. of SPIE 6456 64560C
[9] Shterengas L, Belenky G, Kisin M V and Donetsky D 2007 Appl. Phys. Lett. 90 11119
[10] Chen J, Kipshidze G and Shterengas L 2010 IEEE J. Quantum Electron. 46 1464
[11] Postigo P A, Golmayo D, Gomez H, Rodriguez D and Dotor M L 2002 Jpn. J. Appl. Phys. Pt Lett. 41 L565
[12] Liu G T, Stintz A, Pease E A and Newell T C 2000 Photon. Technol. Lett. IEEE 12 4
[13] Heo D, Song J D, Han I K, Choi W J and Yong T L 2013 IEEE J. Quantum Electron. 49 24
[14] Stickley C M and Hach E E 2006 Proc. of SPIE 6104 610405
[15] Kelemen M T, Rattunde M and Wagner J 2010 Proc. SPIE 7583 75830O
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[3] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[4] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[5] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[6] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[7] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[8] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[9] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[12] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[13] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[14] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[15] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
No Suggested Reading articles found!