CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal |
Ding Yu(余丁)1,2, Guiying Shen(沈桂英)1, Hui Xie(谢辉)1, Jingming Liu(刘京明)1, Jing Sun(孙静)1,2, Youwen Zhao(赵有文)1,3 |
1 Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Te-doped GaSb single crystal grown by the liquid encapsulated Czochralski (LEC) method exhibits a lag of compensating progress and a maximum carrier concentration around 8×1017 cm-3. The reason for this phenomenon has been investigated by a quantity concentration evaluation of the Te donor and native acceptor. The results of glow discharge mass spectrometry (GDMS) and Hall measurement suggest that the acceptor concentration increases with the increase of Te doping concentration, resulting in the enhancement of electrical compensation and free electron concentration reduction. The acceptor concentration variation is further demonstrated by photoluminescence spectra and explained by the principle of Fermi level dependent defect formation energy.
|
Received: 25 January 2019
Revised: 28 February 2019
Accepted manuscript online:
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.70.Jb
|
(Chemical composition analysis, chemical depth and dopant profiling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474104 and 61504131). |
Corresponding Authors:
Youwen Zhao
E-mail: zhaoyw@semi.ac.cn
|
Cite this article:
Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文) Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal 2019 Chin. Phys. B 28 057102
|
[1] |
Dutta P S, Bhat H L and Kumar V 1997 J. Appl. Phys. 81 5821
|
[2] |
Sifferman S D, Nair H P, Salas R, Sheehan N T, Maddox S J, Crook A M and Bank S R 2015 IEEE J. Sel. Top. Quantum Electron. 21 1
|
[3] |
Tang L, Fraas L M, Liu Z, Xu C and Chen X 2015 IEEE Trans. Electron. Devices 62 2809
|
[4] |
Juang B C, Laghumavarapu R B, Foggo B J, Simmonds P J, Lin A, Liang B and Huffaker D L 2015 Appl. Phys. Lett. 106 111101
|
[5] |
Pusz W, Kowalewski A, Martyniuk P, Plis E, Krishna S and Rogalski A 2014 Opt. Eng. 53 043107
|
[6] |
Khvostikov V P, Sorokina S V, Soldatenkov F Y and Timoshina N K 2015 Semiconductors 49 1079
|
[7] |
Quentin G, Meriam T, Tong N B, Laurent C, Guilhem B, Rol, T, Alexei B, Yves R and Aurore V 2015 Opt. Express 23 19118
|
[8] |
Motyka M, Ryczko K, Sek G, Janiak F, Misiewicz J, Bauer A, Höfling S and Forchel A 2012 Opt. Mater. 34 1107
|
[9] |
Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X and Chen H 2018 Chin. Phys. B 27 047209
|
[10] |
Vlasov A S, Rakova E P, Khvostikov V P, Sorokina S V, Kalinovsky V S, Shvarts M Z and Andreev V M 2010 Sol. Energy Mater. Sol. Cells 94 1113
|
[11] |
Hu W G, Wang Z, Su B F, Dai Y Q, Wang S J and Zhao Y W 2004 Phys. Lett. A 332 286
|
[12] |
Baxter R D, Reid F J and Beer A C 1967 Phys. Rev. 162 718
|
[13] |
Kujala J, Segercrantz N, Tuomisto F and Slotte J 2014 J. Appl. Phys. 116 143508
|
[14] |
Ling C C, Mui W K, Lam C H, Beling C D, Fung S, Lui M K, Cheah K W, Li K F, Zhao Y W and Gong M 2002 Appl. Phys. Lett. 80 3934
|
[15] |
Kujala J, Slotte J and Tuomisto F 2013 The 16th International Conference on Positron Annihilation, August 19-24, 2012, Bristol, United Kingdom, p. 012042
|
[16] |
Kainosho K, Shimakura H, Yamamoto H and Oda O 1991 Appl. Phys. Lett. 59 932
|
[17] |
Gútai L 1980 Acta. Phy. Acad. Sci. Hung. 48 119
|
[18] |
Wang D K, Liu X, Tang J L, Fang X, Fang D, Li J H, Wang X H, Chen R and Wei Z P 2018 J. Lumin. 197 266
|
[19] |
Roodenko K, Liao P K, Lan D, Clark K P, Fraser E D, Vargason K W, Kuo J M, Kao Y C and Pinsukanjana P R 2016 J. Appl. Phys. 119 135701
|
[20] |
Scheil E 1942 Z. Metallk. 34 70
|
[21] |
Müller G 1988 Cryst. Growth From Melt (1st Edn.) (Berlin: Springer-Verlag) p. 57
|
[22] |
Sunder W A, Barns R L, Kometani T Y, Jr J M P and Laudise R A 1986 J. Cryst. Growth 78 9
|
[23] |
Lui M K and Ling C C 2005 Semicond. Sci. Technol. 20 1157
|
[24] |
Virkkala V, Havu V, Tuomisto F and Puska M J 2012 Phys. Rev. B 86 085134
|
[25] |
Hakala M, Puska M J and Nieminen R M 2002 J. Appl. Phys. 91 4988
|
[26] |
Chandola A, Pino R and Dutta P S 2005 Semicond. Sci. Technol. 20 886
|
[27] |
Meulen Y J V D 1967 J. Phys. Chem. Solids 28 25
|
[28] |
Dutta P S, Prasad V, Bhat H L and Kumar V 1996 J. Appl. Phys. 80 2847
|
[29] |
Bignazzi A, Bosacchi A and Magnanini R 1997 J. Appl. Phys. 81 7540
|
[30] |
Wu M C and Chen C C 1993 J. Appl. Phys. 73 8495
|
[31] |
Su J, Liu T, Liu J M, Yang J, Bai Y B, Shen G Y, Dong Z Y, Wang F F and Zhao Y W 2016 Chin. Phys. B 25 077801
|
[32] |
Wu M C and Chen C C 1992 J. Appl. Phys. 72 4275
|
[33] |
Burstein E 1954 Phys. Rev. 93 632
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|