ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm |
Yong-Zhou Xue(薛永洲)1,2, Ze-Sheng Chen(陈泽升)1, Hai-Qiao Ni(倪海桥)1, Zhi-Chuan Niu(牛智川)1, De-Sheng Jiang(江德生)1, Xiu-Ming Dou(窦秀明)1,2, Bao-Quan Sun(孙宝权)1,2 |
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We report on the resonance fluorescence (RF) from single InAs quantum dots (QDs) emitting at the telecom band of 1300 nm. The InAs/GaAs QDs are embedded in a planar optical microcavity and the RF is measured by an orthogonal excitation-detection geometry for deeply suppressing the residual laser scattering. An ultra-weak He-Ne laser is necessary to be used as a gate laser for obtaining RF. Rabi oscillation with more than one period is observed through the picosecond (ps) pulsed laser excitation. The resonant control of exciton opens up new possibilities for realizing the on-demand single photon emission and quantum manipulation of solid-state qubits at telecom band.
|
Received: 06 February 2017
Revised: 06 April 2017
Accepted manuscript online:
|
PACS:
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
78.67.Hc
|
(Quantum dots)
|
|
Fund: Project supported by the National Basic Research Program, China (Grant No. 2013CB922304), the National Key Research and Development Program of China (Grant No. 2016YFA0301202), and the National Natural Science Foundation of China (Grant Nos. 11474275, 61674135, and 91536101). |
Corresponding Authors:
Xiu-Ming Dou, Bao-Quan Sun
E-mail: xmdou04@semi.ac.cn;bqsun@semi.ac.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Yong-Zhou Xue(薛永洲), Ze-Sheng Chen(陈泽升), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川), De-Sheng Jiang(江德生), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权) Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm 2017 Chin. Phys. B 26 084202
|
[1] |
Brahim L and Michel O 2005 Rep. Prog. Phys. 68 1129
|
[2] |
Charles S, David F, Jelena V, Glenn S S and Yoshihisa Y 2004 New J. Phys. 6 89
|
[3] |
Wu X F, Dou X M, Ding K, Zhou P Y, Ni H Q, Niu Z C, Jiang D S and Sun B Q 2013 Appl. Phys. Lett. 103 252108
|
[4] |
Patel R B, Bennett A J, Farrer I, Nicoll C A, Ritchie D A and Shields A J 2010 Nat. Photon. 4 632
|
[5] |
Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Höfling S, Lu C Y and Pan J W 2016 Phys. Rev. Lett. 116 020401
|
[6] |
Holmes M J, Kako S, Choi K, Arita M and Arakawa Y 2016 ACS Photon. 3 543
|
[7] |
Liu X, Akahane K, Jahan N A, Kobayashi N, Sasaki M, Kumano H and Suemune I 2013 Appl. Phys. Lett. 103 061114
|
[8] |
Paul M, Kettler J, Zeuner K, Clausen C, Jetter M and Michler P 2015 Appl. Phys. Lett. 106 122105
|
[9] |
Monniello L, Reigue A, Hostein R, Lemaitre A, Martinez A, Grousson R and Voliotis V 2014 Phys. Rev. B 90 041303
|
[10] |
Al-Khuzheyri R, Dada A C, Huwer J, Santana T S, Skiba-Szymanska J, Felle M, Ward M B, Stevenson R M, Farrer I, Tanner M G, Hadfield R H, Ritchie D A, Shields A J and Gerardot B D 2016 Appl. Phys. Lett. 109 163104
|
[11] |
Muller A, Flagg E B, Bianucci P, Wang X Y, Deppe D G, Ma W, Zhang J, Salamo G J, Xiao M and Shih C K 2007 Phys. Rev. Lett. 99 187402
|
[12] |
Dou X M, Yu Y, Sun B Q, Jiang D S, Ni H Q and Niu Z C 2012 Chin. Phys. Lett. 29 104203
|
[13] |
Qiao N, Chen Z H, Yang Y B, Liu S D, Wang Y C and Ye H 2016 IEEE Photon. J. 8 2
|
[14] |
Cao S and Xu X L 2014 Physics 43 740 (in Chinese)
|
[15] |
Nguyen H S, Sallen G, Voisin C, Roussignol P, Diederichs C and Cassabois G 2012 Phys. Rev. Lett. 108 057401
|
[16] |
Chen Z S, Ma B, Shang X J, He Y, Zhang L C, Ni H Q, Wang J L and Niu Z C 2016 Nanoscale Res. Lett. 11 382
|
[17] |
Ramsay A J, Gopal A V, Gauger E M, Nazir A, Lovett B W, Fox A M and Skolnick M S 2010 Phys. Rev. Lett. 104 017402
|
[18] |
Nguyen H S, Sallen G, Abbarchi M, Ferreira R, Voisin C, Roussignol P, Cassabois G and Diederichs C 2013 Phys. Rev. B 87 115305
|
[19] |
Nguyen H S, Sallen G, Voisin C, Roussignol P, Diederichs C and Cassabois G 2011 Appl. Phys. Lett. 99 261904
|
[20] |
Monniello L, Tonin C, Hostein R, Lemaitre A, Martinez A, Voliotis V and Grousson R 2013 Phys. Rev. Lett. 111 026403
|
[21] |
Melet R, Voliotis V, Enderlin A, Roditchev D, Wang X L, Guillet T and Grousson R 2008 Phys. Rev. B 78 073301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|