Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 107801    DOI: 10.1088/1674-1056/26/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

N-type GaSb single crystals with high below-band gap transmission

Yong-Biao Bai(白永彪)1,2, You-Wen Zhao(赵有文)1,2, Gui-Ying Shen(沈桂英)1,2, Xiao-Yu Chen(陈晓玉)1,2, Jing-Ming Liu(刘京明)1, Hui Xie(谢晖)1, Zhi-Yuan Dong(董志远)1, Jun Yang(杨俊)1, Feng-Yun Yang(杨凤云)1, Feng-Hua Wang(王凤华)1
1. Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2. College of Materials Science and Opto-electronic Technology, Univeristy of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Te-doped GaSb single crystals are studied by measuring Hall effect, infrared (IR) transmission and photoluminescence (PL) spectra. It is found that the n-type GaSb with IR transmittance can be obtained as high as 60% by the critical control of the Te-doping concentration and electrical compensation. The concentration of the native acceptor-associated defects is apparently low in the Te-doped GaSb compared with those in undoped and heavily Te-doped GaSb. The mechanism for the high IR transmittance is analyzed by considering the defect-involved optical absorption process.

Keywords:  Te-doped GaSb      infrared transmission      native defects      PL  
Received:  08 March 2017      Revised:  14 June 2017      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  78.30.-j (Infrared and Raman spectra)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61474104 and 61504131).

Corresponding Authors:  You-Wen Zhao     E-mail:  zhaoyw@semi.ac.cn

Cite this article: 

Yong-Biao Bai(白永彪), You-Wen Zhao(赵有文), Gui-Ying Shen(沈桂英), Xiao-Yu Chen(陈晓玉), Jing-Ming Liu(刘京明), Hui Xie(谢晖), Zhi-Yuan Dong(董志远), Jun Yang(杨俊), Feng-Yun Yang(杨凤云), Feng-Hua Wang(王凤华) N-type GaSb single crystals with high below-band gap transmission 2017 Chin. Phys. B 26 107801

[1] Dutta P S, Bhat H L and Kummar V 1997 J. Appl. Phys. 81 5821
[2] Robinson J A and Mohney S E 2004 J. Appl. Phys. 96 2684
[3] Zia N, Jukka V, Riku K, Antti A, Soile S and Mircea G 2016 Appl. Phys. Lett. 109 231102
[4] Kim H, Meng Y, Rouviere J L and Zuo J M 2017 Micron. 92 6
[5] Plank H, Tarasenko S A, Hummel T, Knebl G, Pfeffer P, Kamp M, H? fling S and Ganichev S D 2017 Physica E 85 193
[6] Zhou X C, Li D S, Huang J L, Zhang Y H, Mu Y C, Ma W Q, Tie X Y and Zuo D F 2016 Infrared Phys. Technol. 78 263
[7] Hao H Y, Xiang W, Wang G W, Xu Y Q, Han X, Sun Y Y, Jiang D W, Zhang Y, Liao Y P, Wei S H and Niu Z C 2017 Chin. Phys. B 26 047303
[8] Pino R, Ko Y and Dutta P S 2004 J. Appl. Phys. 96 1064
[9] Hu W G, Wang Z, Su B F, Dai Y Q, Wang S J and Zhao Y W 2004 Phys. Lett. A 332 286
[10] Tahini H A, Chroneos A, Murphy S T, Schwingenschlögl U and Grimes R W 2013 J. Appl. Phys. 114 063517
[11] Vlasov A S, Rakova E P, Khvostikov V P, Sorokina S V, Kalinovsky V S, Shvarts M Z and Andreev V M 2010 Solar Energy Mater. Solar Cells 94 1113
[12] Milvidskaya A G, Polyakov A Y, Kolchina G P, Milnes A G, Govorkov A V, Smirnov N B and Tunitskaya I V 1994 Mater. Sci. Eng. B 22 279
[13] Chandola A, Pino R and Dutta P S 2005 Semicond. Sci. Technol. 20 886
[14] Kahn A H 1995 Phys. Rev. 97 1647
[15] Rudolph P, Czupalla M and Lux B 2009 J. Crystal Growth 311 4543
[16] Kaiser R and Fan H Y 1965 Phys. Rev. 138 A156
[17] Roodenko K, Liao P K, Lan D, Clark K P, Fraser E D, Vargason K W, Kuo J M, Kao Y C and Pinsukanjana P R 2016 J. Appl. Phys. 119 135701
[18] Su J, Liu T, Liu J M, Shen G Y, Bai Y B, Dong Z Y, Wang F F and Zhao Y W 2017 J. Semicond. 38 4
[19] Udayashankar N K and Bhat H L 2001 Bull. Mater. Sci. 24 445
[20] Ramelan A H, Drozdowicz T K, Tansley T L and Goldys E M 2001 J. Electronic Matter 30 8
[21] Reijnen L, Brunton R and Grant I R 2005 J. Crystal Growth 275 595
[22] Kane E O 1956 J. Phys. Chem. Solids 1 82
[23] Visvanathan S 1960 Phys. Rev. 120 376
[24] Becker W M, Ramdas A K and Fan H Y 1961 J. Appl. Phys. 32 2094
[25] Lorenz M R, Reuter W, Dumke W P, Chicotka R J, Pettit G D and Woodall J M 1968 Appl. Phys. Lett. 13 421
[26] Bignazzi A, Bosacchi A and Magnanini R 1997 J. Appl. Phys. 81 7540
[27] Noack R A, Rühle W and Morgan T N 1978 Phys. Rev. B 18 6944
[28] Ruhle W, Jakowetz W, Wolk C and Linnebach L 1976 Phys. Status Solidi B 73 255
[29] Wu M C and Chen C C 1993 J. Appl. Phys. 73 8495
[30] Dutta P S, Koteswara K S R, Bhat H L and Kumar V 1995 Appl. Phys. A 61 149
[1] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[2] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[5] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[6] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[7] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[8] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[9] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[10] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[11] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[12] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[13] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[14] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[15] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
No Suggested Reading articles found!