Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 106401    DOI: 10.1088/1674-1056/27/10/106401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The affection on the nature of percolation by concentration of pentagon-heptagon defects in graphene lattice

Yuming Yang(杨宇明)1,2, Baohua Teng(滕保华)1
1 School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  

In this paper the percolation behavior with a specific concentration of the defects was discussed on the two-dimensional graphene lattice. The percolation threshold is determined by a numerical method with a high degree of accuracy. This method is also suitable for locating the percolation critical point on other crystalline structures. Through investigating the evolution of the largest cluster size and the cluster sizes distribution, we find that under various lattice sizes and concentrations of pentagon-heptagon defects there is no apparent change for the percolation properties in graphene lattice.

Keywords:  percolation      graphene      pentagon-heptagon defect      concentration  
Received:  15 June 2018      Revised:  04 August 2018      Accepted manuscript online: 
PACS:  64.60.ah (Percolation)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  65.80.Ck (Thermal properties of graphene)  
Corresponding Authors:  Yuming Yang     E-mail:  yangym@uestc.edu.cn

Cite this article: 

Yuming Yang(杨宇明), Baohua Teng(滕保华) The affection on the nature of percolation by concentration of pentagon-heptagon defects in graphene lattice 2018 Chin. Phys. B 27 106401

[1] Stauffer D and Aharony A 2003 Introduction to Percolation Theory (Taylor and Francis) pp. 5-13, 52
[2] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468
[3] Moore C and Newman M E J 2000 Phys. Rev. E 61 5678
[4] Li M and Wang B H 2014 Chin. Phys. B 23 076402
[5] Wan B H, Zhang P, Zhang J, Di Z R and Fan Y 2012 Acta Phys. Sin. 61 166402 (in Chinese)
[6] Kaminski A and Das S S 2002 Phys. Rev. Lett. 88 247202
[7] Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Rev. Mod. Phys. 87 925
[8] Li L and Li K F 2015 Acta Phys. Sin. 64 136402 (in Chinese)
[9] Li Z W, Liu H J and Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese)
[10] Arda E, Mergen Ö B and Pekcan Ö 2018 Phase Transit. 91 546
[11] Bellaiche L, Wei S H, and Zunger A 1996 Phys. Rev. B 54 17568
[12] Boulanger N, Yu V, Hilke M, Toney M F and Barbero D R 1996 Phys. Chem. Chem. Phys. 20 4422
[13] Franceschetti M, Dousse O, Tse D N C and Thiran P 2007 IEEE T Inform. Theor. 53 1009
[14] Jia X, Hon J S, Yang H C, Yang C, Fu C J, Hu J Q and SHi X H 2015 Chin. Phys. Lett. 32 016403
[15] Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco J J and Vespignani A 2009 Proc. Natl. Acad. Sci. 106 21484
[16] Achlioptas D, Souza R M D and Spencer J 2009 Science 323 1453
[17] Zierenberg J, Fricke N, Marenz M, Spitzner F P, Blavatska V and Janke W 2007 Phys. Rev. E 96 062125
[18] Mascioli A M, Burke C J, Giso M Q, and Atherton T J 2017 Soft Matter 13 7090
[19] Lončarević I, Budinski-Petković L, Dujak D, Karašić A, Jašić Z M and Vrhovac S B 2017 J. Stat. Mech.-Theor. E. 2017 093202
[20] Iliev G K, Janse V R E J and Madras N 2015 J. Stat. Phys. 158 255
[21] Lu M M, Yuan J, Wen B, Liu J, Cao W Q and Cao M S 2013 Chin. Phys. B 22 037701
[22] Landau D P and Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics, 2nd edn. (Cambridge:Cambridge University Press)
[23] Binder K and Heermann D W 2010 Monte Carlo Simulation in Statistical Physics, 5th edn. (Berlin:Springer) p. 62
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[4] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
No Suggested Reading articles found!