Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088105    DOI: 10.1088/1674-1056/27/8/088105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A lattice Boltzmann-cellular automaton study on dendrite growth with melt convection in solidification of ternary alloys

Dong-Ke Sun(孙东科)1,2, Zhen-Hua Chai(柴振华)3, Qian Li(李谦)4, Guang Lin(林光)5
1 School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
2 Open Project of State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China;
3 School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China;
4 School of Materials Science and Engineering & Materials Genome Institute, Shanghai University, Shanghai 200444, China;
5 Department of Mathematics, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
Abstract  

A lattice Boltzmann (LB)-cellular automaton (CA) model is employed to study the dendrite growth of Al-4.0 wt%Cu-1.0 wt%Mg alloy. The effects of melt convection, solute diffusion, interface curvature, and preferred growth orientation are incorporated into the coupled model by coupling the LB-CA model and the CALPHAD-based phase equilibrium solver, PanEngine. The dendrite growth with single and multiple initial seeds was numerically studied under the conditions of pure diffusion and melt convection. Effects of initial seed number and melt convection strength were characterized by new-defined solidification and concentration entropies. The numerical result shows that the growth behavior of dendrites, the final microstructure, and the micro-segregation are significantly influenced by melt convection during solidification of the ternary alloys. The proposed solidification and concentration entropies are useful characteristics bridging the solidification behavior and the microstructure evolution of alloys.

Keywords:  lattice Boltzmann      dendritic growth      numerical simulation      melt convection  
Received:  08 March 2018      Revised:  09 May 2018      Accepted manuscript online: 
PACS:  81.30.Fb (Solidification)  
  47.11.-j (Computational methods in fluid dynamics)  
  68.08.De (Liquid-solid interface structure: measurements and simulations)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51728601 and 51771118).

Corresponding Authors:  Dong-Ke Sun     E-mail:  dksun@seu.edu.cn

Cite this article: 

Dong-Ke Sun(孙东科), Zhen-Hua Chai(柴振华), Qian Li(李谦), Guang Lin(林光) A lattice Boltzmann-cellular automaton study on dendrite growth with melt convection in solidification of ternary alloys 2018 Chin. Phys. B 27 088105

[1] Chen L, Kang Q, Robinson B A, He Y L and Tao W Q 2013 Phys. Rev. E 87 043306
[2] Zhang C B, Deng Z L and Chen Y P 2014 Int. J. Heat Mass Transfer 70 322
[3] Gan Y B, Xu A G, Zhang G C and Succi S 2015 Soft Matter 11 5336
[4] Chen Y P, Wu L Y and Zhang L 2015 Int. J. Heat Mass Transfer 82 42
[5] Liang H, Li Q X, Shi B C and Chai Z H 2016 Phys. Rev. E 93 033113
[6] Eshraghi M, Jelinek B and Felicelli S 2015 JOM 67 1786
[7] Xing H, Zhang L, Song K, Chen H and Jin K 2017 Int. J. Heat Mass Transfer 104 607
[8] Xing H, Ankit K, Dong X, Chen H and Jin K 2018 Int. J. Heat Mass Transfer 117 1107
[9] Miller W, Succi S and Manutti D 2001 Phys. Rev. Lett. 86 3578
[10] Miller W, Rasin I and Pimentel F 2004 J. Cryst. Growth 266 283
[11] Medvedev D and Kassner K 2005 Phys. Rev. E 72 056703
[12] Medvedev D, Fischaleck T and Kassner K 2007 J. Cryst. Growth 303 69
[13] Selzer M, Jainta M and Nestler B 2009 Phys. Status Solidi B 246 1197
[14] Chakraborty S and Chatterjee D 2007 J. Fluid Mech. 592 155
[15] Sun D K, Zhu M F, Pan S Y and Raabe D 2009 Acta Mater. 57 1755
[16] Sun D K, Zhu M F, Pan S Y, Yang C R and Raabe D 2011 Comput. Math. Appl. 61 3585
[17] Yin H, Felicelli S D and Wang L 2011 Acta Mater. 59 3124
[18] Eshraghi M, Felicelli S D and Jelinek B 2012 J. Cryst. Growth 354 129
[19] Jelinek B, Eshraghi M, Felicelli S and Peters J F 2014 Comput. Phys. Commun. 185 939
[20] Sun D K, M Zhu M F, Wang J and Sun B D 2016 Int. J. Heat Mass Transfer 94 474
[21] Chen S Y, Chen H D, Martinez D and Matthaeus W H 1991 Phys. Rev. Lett. 67 3776
[22] Qian Y H, d'Humi'eres D and Lallemand P 1992 Europhys. Lett. 17 479
[23] Guo Z L, Zheng C G and Shi B C 2002 Phys. Rev. E 65 046308
[24] Lallemand P and Luo L S 2000 Phys. Rev. E 62 4982
[25] Deng B, Shi B C and Wang G C 2005 Chin. Phys. Lett. 22 267
[26] Chen S L, Daniel S, Zhang F, Chiang Y A, Yan X Y, Xie F Y, Schmid-Fetzer R and Oates W A 2002 CALPHAD 26 175
[27] Zhu M F, Lee S Y and Hong C P 2004 Phys. Rev. E 69 061610
[28] Beltran-Sanchez L and Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471
[29] Shannon C E 1948 Bell Syst. Tech. J. 27 379
[30] Yan X Y, Chen S L, Xie F Y and Chiang Y A 2002 Acta Mater. 50 2199
[31] Jacot A and Rappaz M 2002 Acta Mater. 50 1909
[32] Ode M, Lee J S, Kim S G, Kim W T and Suzuki T 2000 ISIJ Int. 40 870
[33] Zhu M F, Cao W S, Chen S L, Hong C P and Chiang Y A 2007 J. Phase Equilib. Diff. 28 130
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[4] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[5] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[6] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[7] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[8] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[9] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[10] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[11] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[12] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[13] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[14] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[15] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
No Suggested Reading articles found!