|
|
Bogoliubov excitations in a Bose-Hubbard model on a hyperhoneycomb lattice |
Wen-yan Zhou(周雯琰)1, Ya-jie Wu(吴亚杰)2, Su-Peng Kou(寇谡鹏)1 |
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 School of Science, Xi'an Technological University, Xi'an 710032, China |
|
|
Abstract We study the topological properties of Bogoliubov excitation modes in a Bose-Hubbard model of three-dimensional (3D) hyperhoneycomb lattices. For the non-interacting case, there exist nodal loop excitations in the Bloch bands. As the on-site repulsive interaction increases, the system is first driven into the superfluid phase and then into the Mott-insulator phase. In both phases, the excitation bands exhibit robust nodal-loop structures and bosonic surface states. From a topology point of view, these nodal-loop excitation modes may be viewed as a permanent fingerprint left in the Bloch bands.
|
Received: 16 November 2017
Revised: 23 February 2018
Accepted manuscript online:
|
PACS:
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
67.25.dj
|
(Superfluid transition and critical phenomena)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11474025,11674026,and 11504285),Specialized Research Fund for the Doctoral Program,China,and Young Talent Fund of University Association for Science and Technology in Shaanxi,China (Grant No.20160224). |
Corresponding Authors:
Su-Peng Kou
E-mail: spkou@bnu.edu.cn
|
Cite this article:
Wen-yan Zhou(周雯琰), Ya-jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏) Bogoliubov excitations in a Bose-Hubbard model on a hyperhoneycomb lattice 2018 Chin. Phys. B 27 050302
|
[13] |
Prodan E and Prodan C 2009 Phys. Rev. Lett. 103 248101
|
[1] |
Takayama T, Kato A, Dinnebier R, Nuss J, Kono H, Veiga L S I, Fabbris G, Haskel D and Takagi H 2015 Phys. Rev. Lett. 114 077202
|
[14] |
Süsstrunk R and Huber S D 2015 Science 349 6243
|
[2] |
Biffin A, Johnson R D, Choi S, Freund F, Manni S, Bombardi A, Manuel P, Gegenwart P and Coldea R 2014 Phys. Rev. B 90 205116
|
[15] |
Shindou R, Matsumoto R, Murakami S and Ohe J 2013 Phys. Rev. B 87 174427
|
[3] |
Modic K A, Smidt T E, Kimchi I, Breznay N P, Biffin A, Choi S, Johnson R D, Coldea R, Watkins-Curry P, McCandless G T, Gandara F, Islam Z, Vishwanath A, Chan J Y, Shekhter A, McDonald R D and Analytis J G 2014 Nat. Commun. 5 4203
|
[16] |
Shindou R, Ohe J, Matsumoto R, Murakami S and Saitoh E 2013 Phys. Rev. B 87 174402
|
[4] |
Lee E K, Bhattacharjee S, Hwang K, Kim H, Jin H and Kim Y 2014 Phys. Rev. B 89 205132
|
[17] |
Li Y, Zhong W X, Wang D Q, Feng Q R, Liu Z X, Zhou J F, Jia C Y, Hu F, Zeng J W, Guo Q C, Fu L and Luo M M 2016 Nat. Commun. 7 10503
|
[5] |
Mullen K, Uchoa B and Glatzhofer D T 2015 Phys. Rev. Lett. 115 026403
|
[18] |
Bardyn C E, Karzig T, Refael G and Liew T C 2015 Phys. Rev. B 91 161413
|
[6] |
Hermanns M, O'Brien K and Trebst S 2015 Phys. Rev. Lett. 114 157202
|
[19] |
Karzig T, Bardyn C E, Lindner N H and Refael G 2015 Phys. Rev. X 5 031001
|
[7] |
Schaffer R, Lee E K, Lu Y M and Kim Y B 2015 Phys. Rev. Lett. 114 116803
|
[20] |
Zhang L F, Ren J, Wang J S and Li B W 2013 Phys. Rev. B 87 144101
|
[8] |
Ezawa M 2016 Phys. Rev. Lett. 116 127202
|
[21] |
Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Alidoust N, Lee C C, Huang S M and Lin H 2016 Nat. Commun. 7 10735
|
[9] |
Furukawa S and Ueda M 2015 New J. Phys. 17 115014
|
[22] |
Kim S K, Ochoa H, Zarzuela R and Tserkovnyak Y 2016 Phys. Rev. Lett. 117 227201
|
[10] |
Wu Y J, Zhou W Y and Kou S P 2017 Phys. Rev. A 95 023620
|
[23] |
Mook A, Henk J and Mertig I 2017 Phys. Rev. B 95 014418
|
[11] |
Peano V, Houde M, Brendel C, Marquardt F and Clerk A A 2016 Nat. Commun. 7 10779
|
[24] |
Li K K, Li C Y, Hu J P and Fang C 2017 Phys. Rev. Lett. 119 247202
|
[12] |
Peano V, Houde M, Marquardt F and Clerk A A 2016 Phys. Rev. X 6 041026
|
[25] |
Li K K, Li C Y, Hu J P, Li Y and Fang C 2017 Chin. Phys. Lett. 34 077501)
|
[13] |
Prodan E and Prodan C 2009 Phys. Rev. Lett. 103 248101
|
[26] |
Oosten D V, Straten P V D and Stoof H T C 2001 Phys. Rev. A 63 053601
|
[14] |
Süsstrunk R and Huber S D 2015 Science 349 6243
|
[27] |
Lim L K, Smith C M and Hemmerich A 2008 PPhys. Rev. Lett. 100 130402
|
[15] |
Shindou R, Matsumoto R, Murakami S and Ohe J 2013 Phys. Rev. B 87 174427
|
[28] |
Chen B L, Kou S P, Zhang Y and Chen S 2010 Phys. Rev. A 81 053608
|
[16] |
Shindou R, Ohe J, Matsumoto R, Murakami S and Saitoh E 2013 Phys. Rev. B 87 174402
|
[29] |
Keleş, Ahmet and Oktel and Oktel M Ö 2015 Phys. Rev. A 91 013629
|
[17] |
Li Y, Zhong W X, Wang D Q, Feng Q R, Liu Z X, Zhou J F, Jia C Y, Hu F, Zeng J W, Guo Q C, Fu L and Luo M M 2016 Nat. Commun. 7 10503
|
[30] |
Landau L D and Lifshitz E M 1980 Course of Theoretical Physics 5
|
[18] |
Bardyn C E, Karzig T, Refael G and Liew T C 2015 Phys. Rev. B 91 161413
|
[31] |
Heikkilä T T and Volovik G E 2011 Jetp Lett. 93 59
|
[19] |
Karzig T, Bardyn C E, Lindner N H and Refael G 2015 Phys. Rev. X 5 031001
|
[32] |
Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
|
[20] |
Zhang L F, Ren J, Wang J S and Li B W 2013 Phys. Rev. B 87 144101
|
[33] |
Yu R, Weng H M, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
|
[21] |
Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Alidoust N, Lee C C, Huang S M and Lin H 2016 Nat. Commun. 7 10735
|
[34] |
Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
|
[22] |
Kim S K, Ochoa H, Zarzuela R and Tserkovnyak Y 2016 Phys. Rev. Lett. 117 227201
|
[35] |
Huang B B and Yang X S 2018 J. Phys. B:At. Mol. Opt. Phys. 51 015302
|
[23] |
Mook A, Henk J and Mertig I 2017 Phys. Rev. B 95 014418
|
[36] |
Mullen K, Uchoa B, Wang B and Glatzhofer D 2017 arXiv:1603.01647
|
[24] |
Li K K, Li C Y, Hu J P and Fang C 2017 Phys. Rev. Lett. 119 247202
|
[25] |
Li K K, Li C Y, Hu J P, Li Y and Fang C 2017 Chin. Phys. Lett. 34 077501)
|
[26] |
Oosten D V, Straten P V D and Stoof H T C 2001 Phys. Rev. A 63 053601
|
[27] |
Lim L K, Smith C M and Hemmerich A 2008 PPhys. Rev. Lett. 100 130402
|
[28] |
Chen B L, Kou S P, Zhang Y and Chen S 2010 Phys. Rev. A 81 053608
|
[29] |
Keleş, Ahmet and Oktel and Oktel M Ö 2015 Phys. Rev. A 91 013629
|
[30] |
Landau L D and Lifshitz E M 1980 Course of Theoretical Physics 5
|
[31] |
Heikkilä T T and Volovik G E 2011 Jetp Lett. 93 59
|
[32] |
Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
|
[33] |
Yu R, Weng H M, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
|
[34] |
Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
|
[35] |
Huang B B and Yang X S 2018 J. Phys. B:At. Mol. Opt. Phys. 51 015302
|
[36] |
Mullen K, Uchoa B, Wang B and Glatzhofer D 2017 arXiv:1603.01647
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|