Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 050301    DOI: 10.1088/1674-1056/27/5/050301
GENERAL Prev   Next  

Practical security of continuous-variable quantum key distribution under finite-dimensional effect of multi-dimensional reconciliation

Yingming Zhou(周颖明)1, Xue-Qin Jiang(蒋学芹)3, Weiqi Liu(刘维琪)2, Tao Wang(王涛)1, Peng Huang(黄鹏)1, Guihua Zeng(曾贵华)1,3
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory on Navigation and Location-based Service, and Center of Quantum Information Sensing and Processing(QSIP), Shanghai Jiao Tong University, Shanghai 200240, China;
2 College of Information Science and Technology, Northwest University, Xi'an 710127, China;
3 School of Information Science and Technology, Donghua University, Shanghai 201620, China
Abstract  The well-known multi-dimensional reconciliation is an effective method used in the continuous-variable quantum key distribution in the long-distance and the low signal-to-noise-ratio scenarios. The virtual channel employed to exchange data is generally established by using a finite-dimensional rotation in the reconciliation procedure. In this paper, we found that the finite dimension of the multi-dimensional reconciliation inevitably leads to the mismatch of the signal-to-noise-ratio between the quantum channel and the virtual channel, which may be called the finite-dimension effect. Such an effect results in an overestimation on the secret key rate, and subsequently induces vital practical security loopholes.
Keywords:  multi-dimensional reconciliation      finite-dimensional effect      continuous-variable      quantum key distribution  
Received:  15 January 2018      Revised:  10 February 2018      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.67.Dd (Quantum cryptography and communication security)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61332019,61671287,and 61631014) and the National Key Research and Development Program of China (Grant No.2016YFA0302600).
Corresponding Authors:  Peng Huang, Guihua Zeng     E-mail:  huang.peng@sjtu.edu.cn;ghzeng@sjtu.edu.cn

Cite this article: 

Yingming Zhou(周颖明), Xue-Qin Jiang(蒋学芹), Weiqi Liu(刘维琪), Tao Wang(王涛), Peng Huang(黄鹏), Guihua Zeng(曾贵华) Practical security of continuous-variable quantum key distribution under finite-dimensional effect of multi-dimensional reconciliation 2018 Chin. Phys. B 27 050301

[13] Renner R and Cirac J I 2009 Phys. Rev. Lett. 102 110504
[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[14] Furrer F, Franz T, Berta M, Leverrier A, Scholz V B, Tomamichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502
[2] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[15] Leverrier A, García-Patrón R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502
[3] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[16] Leverrier A 2017 Phys. Rev. Lett. 118 200501
[4] Huang D, Huang P, Wang T, Li H S, Zhou Y M and Zeng G H 2016 Phys. Rev. A 94 032305
[17] Filip R 2008 Phys. Rev. A 77 022310
[5] Xiao H and Zhang Z 2017 Quantum Information Processing 16 13
[18] Jouguet P, Kunz-Jacques S, Diamanti E and Leverrier A 2012 Phys. Rev. A 86 032309
[6] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[19] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 88 022339
[7] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378
[20] Jouguet P, Kunz-Jacques S and Diamanti E 2013 Phys. Rev. A 87 062313.
[8] Gehring T, Händchen V, Duhme J, Furrer F, Franz T, Pacher C, Werner R F and Schnabel R 2015 Nat. Commun. 6 8795
[21] Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C and Han Z F 2013 Phys. Rev. A 87 062329
[9] Navascués M, Grosshans F and Acin A 2006 Phys. Rev. Lett. 97 190502
[22] Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2014 Phys. Rev. A 89 032304
[10] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[23] Qin H, Kumar R and Alléaume R 2016 Phys. Rev. A 94 012325
[11] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
[24] Wang C, Huang P, Huang D, Lin D K and Zeng G H 2016 Phys. Rev. A 93 022315
[12] Leverrier A 2015 Phys. Rev. Lett. 114 070501
[25] Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Han Z F and Guo G C 2015 Nature Photonics 9 832
[13] Renner R and Cirac J I 2009 Phys. Rev. Lett. 102 110504
[26] Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739
[14] Furrer F, Franz T, Berta M, Leverrier A, Scholz V B, Tomamichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502
[27] Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
[15] Leverrier A, García-Patrón R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502
[28] Xu F X, Wang S, Han Z F and Guo G C 2010 Chin. Phys. B 19 10
[29] Fossier S, Diamanti E, Debuisschert T, Villing A, Tualle-Brouri R and Grangier P 2009 New J. Phys. 11 045023
[16] Leverrier A 2017 Phys. Rev. Lett. 118 200501
[30] Jouguet P, Kunz-Jacques S, Debuisschert T, Fossier S, Diamanti E, Alléaume R, Tualle-Brouri R, Grangier P, Leverrier A, Pache P and Painchault P 2012 Opt. Express 20 14030
[17] Filip R 2008 Phys. Rev. A 77 022310
[31] Huang D, Huang P, Li H S, Wang T, Zhou Y M and Zeng G H 2016 Opt. Lett. 41 3511
[18] Jouguet P, Kunz-Jacques S, Diamanti E and Leverrier A 2012 Phys. Rev. A 86 032309
[19] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 88 022339
[32] Van Assche G, Cardinal J and Cerf N J 2004 IEEE Transactions on Information Theory 50 394
[20] Jouguet P, Kunz-Jacques S and Diamanti E 2013 Phys. Rev. A 87 062313.
[33] Ralph T C 1999 Phys. Rev. A 61 010303
[34] Silberhorn C, Ralph T C, Lütkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
[21] Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C and Han Z F 2013 Phys. Rev. A 87 062329
[35] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
[22] Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2014 Phys. Rev. A 89 032304
[23] Qin H, Kumar R and Alléaume R 2016 Phys. Rev. A 94 012325
[36] Heid M and Lütkenhaus N 2007 Phys. Rev. A 76 022313
[24] Wang C, Huang P, Huang D, Lin D K and Zeng G H 2016 Phys. Rev. A 93 022315
[37] Xuan Q D, Zhang Z S and Voss P L 2009 Opt. Express 17 24244
[25] Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Han Z F and Guo G C 2015 Nature Photonics 9 832
[38] Leverrier A, Alléaume R, Boutros J, Zémor G and Grangier P 2008 Phy. Rev. A 77 042325
[26] Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739
[39] Richardson T and Urbanke R 2002 in Workshop Honoring Prof. Bob McEliece on His 60th Birthday, California Institute of Technology, Pasadena, California pp. 24-25
[27] Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
[40] Jouguet P, Kunz-Jacques S and Leverrier A 2011 Phys. Rev. A 84 062317
[28] Xu F X, Wang S, Han Z F and Guo G C 2010 Chin. Phys. B 19 10
[41] Huang D, Huang P, Lin D K and Zeng G H 2016 Sci. Rep. 6 19201
[29] Fossier S, Diamanti E, Debuisschert T, Villing A, Tualle-Brouri R and Grangier P 2009 New J. Phys. 11 045023
[42] Lin D K, Huang D, Huang P, Peng J Y and Zeng G H 2015 International Journal of Quantum Information 13 1550010
[30] Jouguet P, Kunz-Jacques S, Debuisschert T, Fossier S, Diamanti E, Alléaume R, Tualle-Brouri R, Grangier P, Leverrier A, Pache P and Painchault P 2012 Opt. Express 20 14030
[43] Gallager R 1962 IRE Transactions on information theory 8 21
[31] Huang D, Huang P, Li H S, Wang T, Zhou Y M and Zeng G H 2016 Opt. Lett. 41 3511
[44] Richardson T J, Shokrollahi M A and Urbanke R L 200147 619
[32] Van Assche G, Cardinal J and Cerf N J 2004 IEEE Transactions on Information Theory 50 394
[45] Grinstead C M and Snell J L 2012 Introduction to Probability (New York:American Mathematical Soc.)
[33] Ralph T C 1999 Phys. Rev. A 61 010303
[46] Cover T M and Thomas J A 2012 Elements of Information Theory (New York:John Wiley & Sons)
[34] Silberhorn C, Ralph T C, Lütkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
[35] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
[36] Heid M and Lütkenhaus N 2007 Phys. Rev. A 76 022313
[37] Xuan Q D, Zhang Z S and Voss P L 2009 Opt. Express 17 24244
[38] Leverrier A, Alléaume R, Boutros J, Zémor G and Grangier P 2008 Phy. Rev. A 77 042325
[39] Richardson T and Urbanke R 2002 in Workshop Honoring Prof. Bob McEliece on His 60th Birthday, California Institute of Technology, Pasadena, California pp. 24-25
[40] Jouguet P, Kunz-Jacques S and Leverrier A 2011 Phys. Rev. A 84 062317
[41] Huang D, Huang P, Lin D K and Zeng G H 2016 Sci. Rep. 6 19201
[42] Lin D K, Huang D, Huang P, Peng J Y and Zeng G H 2015 International Journal of Quantum Information 13 1550010
[43] Gallager R 1962 IRE Transactions on information theory 8 21
[44] Richardson T J, Shokrollahi M A and Urbanke R L 200147 619
[45] Grinstead C M and Snell J L 2012 Introduction to Probability (New York:American Mathematical Soc.)
[46] Cover T M and Thomas J A 2012 Elements of Information Theory (New York:John Wiley & Sons)
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!