CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys |
Najam ul Hassan1, Ishfaq Ahmad Shah1, Tahira Khan2, Jun Liu(刘俊)1, Yuanyuan Gong(龚元元)1, Xuefei Miao(缪雪飞)1, Feng Xu(徐锋)1 |
1 MⅡT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2 Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48-xVxNi42Sn10 (x=0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0-5 T are 15.2, 18.8, and 24.3 J·kg-1·K-1 for the x=0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48-xVxNi42Sn10 alloys have a potential for applications in magnetic cooling refrigeration.
|
Received: 29 October 2017
Revised: 19 December 2017
Accepted manuscript online:
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092). |
Corresponding Authors:
Feng Xu
E-mail: xufeng@njust.edu.cn
|
Cite this article:
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋) Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys 2018 Chin. Phys. B 27 037504
|
[1] |
Fang Y K, Yeh C C, Chang C W, Chang W C, Zhu M G and Li W 2007 Scr. Mater. 57 45
|
[2] |
Morrison K, Miyoshi Y and Moore J D 2008 Phys. Rev. B 78 134418
|
[3] |
Sandeman K G 2012 Scr. Mater. 67 566
|
[4] |
Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
|
[5] |
Lyubina J, Nenkov K, Schultz L and Gutfleisch O 2008 Phys. Rev. Lett. 101 177203
|
[6] |
Zhang H, Sun Y J, Li Y I, Wu Y Y, Long Y, Shen J, Hu F X, Sun J R and Shen B 2015 J. Appl. Phys. 117 063902
|
[7] |
Mandal K and Pal D 2007 J. Appl. Phys. 102 053906
|
[8] |
Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
|
[9] |
Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
|
[10] |
Hassan N U, Chen F, Zhang M, Shah I A, Liu J, Gong Y Y, Xu G and Xu F 2017 J. Magn. Magn. Mater. 439 120
|
[11] |
Sandeman K G, Daou R, Özcan S, Durrell J H, Mathur N D and Fray D J 2006 Phys. Rev. B 74 22443
|
[12] |
Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and de Boer F R 2012 Nat. Commun. 3 873
|
[13] |
Ullakko K, Huang J K, Kantner C, O'Handley R C and Kokorin V V 1996 Appl. Phys. Lett. 69 1966
|
[14] |
Khan N, Ali N and Stadler S 2007 J. Appl. Phys. 101 053919
|
[15] |
Liu Z H, Aksoy S and Acet M 2009 J. Appl. Phys. 105 033913
|
[16] |
Han Z D, Wang D H, Zhang C L, Xuan H C, Zhang J R, Gu B X and Du Y W 2008 J. Appl. Phys. 104 053906
|
[17] |
Planes A, Osa L M, Moya X, Krenke T, Acet M and Wassermann E F 2007 J. Magn. Magn. Mater. 310 2767
|
[18] |
Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L and Du Y W 2013 Chin. Phys. B 22 077506
|
[19] |
Li P P, Wang J M and Jiang C B 2011 Chin. Phys. B 20 028104
|
[20] |
Tian L G, Hong L Z, Yan M F, Qiao M X and Heng W G 2013 Chin. Phys. B 22 126201
|
[21] |
Han Z D, Wang D H, Zhang C L, Xuan H C, Zhang J R, Gu B X and Du Y W 2008 Solid State Commun. 146 124
|
[22] |
Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 85 198
|
[23] |
Bhobe P A, Priolkar K R and Nigam A K 2007 Appl. Phys. Lett 91 242503
|
[24] |
Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
|
[25] |
Krenke T, Acet M and Wassermann E F 2005 Phys. Rev. B 72 014412
|
[26] |
Karaman I, Basaran B, Karaca H E, Karsilayan A I and Chumlyakov Y I 2007 Appl. Phys. Lett. 90 172505
|
[27] |
Wu R, Shen F, Hu F, Wang J, Bao L, Zhang L, Liu Y, Zhao Y, Liang F, Zuo W, Sun J and Shen B 2016 Sci. Rep. 6 20993
|
[28] |
Chatterjee S, Giri S and Majumdar S 2008 Phys. Rev. B 77 012404
|
[29] |
Samanta T, Dubenko I, Quetz A, Stadler S and Ali N 2012 Appl. Phys. Lett. 101 242405
|
[30] |
Sharma V K, Chattopadhyay M K and Roy S B 2007 J. Phys. D-Appl. Phys. 40 1869
|
[31] |
Han Z D, Wang D H, Zhang C L, Xuan H C, Gu B X and Du Y W 2007 Appl. Phys. Lett. 90 042507
|
[32] |
Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X and Du Y W 2006 Appl. Phys. Lett. 89 182507
|
[33] |
Sokolovskiy V V, Buchelnikov V D, Taskaev S V, Khovaylo V V, Ogura M and Entel P 2013 J. Phys. D-Appl. Phys. 46 305003
|
[34] |
Moya X, Mañosa L, Planes A, Aksoy S and Acet M 2007 Phys. Rev. B 75 184412
|
[35] |
Kaya M, Cicek M M, Dincer I and Elerman Y 2017 J. Magn. Magn. Mater. 442 429
|
[36] |
Caron L, Oub Z Q, Nguyen T T, CamThanh D T, Tegus O and Brűck E 2009 J. Magn. Magn. Mater. 321 3559
|
[37] |
Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
|
[38] |
Liu J, Gong Y Y, Xu G Z, Peng G, Shah I A, Hassan N U and Xu F 2016 Sci. Rep. 6 23386
|
[39] |
Rama Rao N V, Chandrasekaran V and Suresh K G 2010 J. Appl. Phys. 108 043913
|
[40] |
Shah I A, Hassan N U, Rauf A, Liu J, Gong Y Y, Xu G and Xu F 2017 Chin. Phys. B 26 097501
|
[41] |
Sharma J and Suresh K G 2015 J. Alloys Compd. 620 329
|
[42] |
Shah I A, Hassan N U, Liu J, Gong Y Y, Xu G and Xu F 2017 Chin. Phys. B 26 017501
|
[43] |
Aryal A, Quetz A, Pandey S, Samanta T, Dubenko I, Hill M, Mazumdar D, Stadler S and Ali N 2017 J. Alloys Compd. 709 142
|
[44] |
Ma S C, Wang D H, Xuan H C, Shen L J, Cao Q Q and Du Y W 2011 Chin. Phys. B 20 087502
|
[45] |
Lai J W, Zheng Z G, Zhong X C, Montemayor R, Liu Z W and Zeng D C 2015 Intermetallics 63 7
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|